Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering

The objective of the current study is to prepare a biomimetic collagen–apatite scaffold for improved bone repair and regeneration. A novel bottom–up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2013-07, Vol.9 (7), p.7308-7319
Hauptverfasser: Xia, Zengmin, Yu, Xiaohua, Jiang, Xi, Brody, Harold D., Rowe, David W., Wei, Mei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of the current study is to prepare a biomimetic collagen–apatite scaffold for improved bone repair and regeneration. A novel bottom–up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0–54wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2013.03.038