White matter imaging helps dissociate tau from TDP-43 in frontotemporal lobar degeneration
Background Frontotemporal lobar degeneration (FTLD) is most commonly associated with TAR-DNA binding protein (TDP-43) or tau pathology at autopsy, but there are no in vivo biomarkers reliably discriminating between sporadic cases. As disease-modifying treatments emerge, it is critical to accurately...
Gespeichert in:
Veröffentlicht in: | Journal of neurology, neurosurgery and psychiatry neurosurgery and psychiatry, 2013-09, Vol.84 (9), p.949-955 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Frontotemporal lobar degeneration (FTLD) is most commonly associated with TAR-DNA binding protein (TDP-43) or tau pathology at autopsy, but there are no in vivo biomarkers reliably discriminating between sporadic cases. As disease-modifying treatments emerge, it is critical to accurately identify underlying pathology in living patients so that they can be entered into appropriate etiology-directed clinical trials. Patients with tau inclusions (FTLD-TAU) appear to have relatively greater white matter (WM) disease at autopsy than those patients with TDP-43 (FTLD-TDP). In this paper, we investigate the ability of white matter (WM) imaging to help discriminate between FTLD-TAU and FTLD-TDP during life using diffusion tensor imaging (DTI). Methods Patients with autopsy-confirmed disease or a genetic mutation consistent with FTLD-TDP or FTLD-TAU underwent multimodal T1 volumetric MRI and diffusion weighted imaging scans. We quantified cortical thickness in GM and fractional anisotropy (FA) in WM. We performed Eigenanatomy, a statistically robust dimensionality reduction algorithm, and used leave-one-out cross-validation to predict underlying pathology. Neuropathological assessment of GM and WM disease burden was performed in the autopsy-cases to confirm our findings of an ante-mortem GM and WM dissociation in the neuroimaging cohort. Results ROC curve analyses evaluated classification accuracy in individual patients and revealed 96% sensitivity and 100% specificity for WM analyses. FTLD-TAU had significantly more WM degeneration and inclusion severity at autopsy relative to FTLD-TDP. Conclusions These neuroimaging and neuropathological investigations provide converging evidence for greater WM burden associated with FTLD-TAU, and emphasise the role of WM neuroimaging for in vivo discrimination between FTLD-TAU and FTLD-TDP. |
---|---|
ISSN: | 0022-3050 1468-330X |
DOI: | 10.1136/jnnp-2012-304418 |