Catch-up growth following intra-uterine growth-restriction programmes an insulin-resistant phenotype in adipose tissue

Background: It is now widely accepted that the early-life nutritional environment is important in determining susceptibility to metabolic diseases. In particular, intra-uterine growth restriction followed by accelerated postnatal growth is associated with an increased risk of obesity, type-2 diabete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Obesity 2013-08, Vol.37 (8), p.1051-1057
Hauptverfasser: Berends, L M, Fernandez-Twinn, D S, Martin-Gronert, M S, Cripps, R L, Ozanne, S E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: It is now widely accepted that the early-life nutritional environment is important in determining susceptibility to metabolic diseases. In particular, intra-uterine growth restriction followed by accelerated postnatal growth is associated with an increased risk of obesity, type-2 diabetes and other features of the metabolic syndrome. The mechanisms underlying these observations are not fully understood. Aim: Using a well-established maternal protein-restriction rodent model, our aim was to determine if exposure to mismatched nutrition in early-life programmes adipose tissue structure and function, and expression of key components of the insulin-signalling pathway. Methods: Offspring of dams fed a low-protein (8%) diet during pregnancy were suckled by control (20%)-fed dams to drive catch-up growth. This ‘recuperated’ group was compared with offspring of dams fed a 20% protein diet during pregnancy and lactation (control group). Epididymal adipose tissue from 22-day and 3-month-old control and recuperated male rats was studied using histological analysis. Expression and phosphorylation of insulin-signalling proteins and gene expression were assessed by western blotting and reverse-transcriptase PCR, respectively. Results: Recuperated offspring at both ages had larger adipocytes ( P
ISSN:0307-0565
1476-5497
DOI:10.1038/ijo.2012.196