Electroacupuncture Could Regulate the NF-κB Signaling Pathway to Ameliorate the Inflammatory Injury in Focal Cerebral Ischemia/Reperfusion Model Rats

The activated nuclear factor-KappaB signaling pathway plays a critical role in inducing inflammatory injury. It has been reported that electroacupuncture could be an effective anti-inflammatory treatment. We aimed to explore the complex mechanism by which EA inhibits the activation of the NF-κB sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evidence-based complementary and alternative medicine 2013-01, Vol.2013 (2013), p.1-15
Hauptverfasser: Luo, Yong, Qin, Wen-yi, Chen, Ling, Tao, Tao, Li, Yang, Cai, Yan-li, Li, Ya-hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The activated nuclear factor-KappaB signaling pathway plays a critical role in inducing inflammatory injury. It has been reported that electroacupuncture could be an effective anti-inflammatory treatment. We aimed to explore the complex mechanism by which EA inhibits the activation of the NF-κB signal pathway and ameliorate inflammatory injury in the short term; the effects of NEMO Binding Domain peptide for this purpose were compared. Focal cerebral I/R was induced by middle cerebral artery occlusion for 2 hrs. Total 380 male Sprague-Dawley rats are in the study. The neurobehavioral scores, infarction volumes, and the levels of IL-1β and IL-13 were detected. NF-κB p65, IκBα, IKKα, and IKKβ were analyzed and the ability of NF-κB binding DNA was investigated. The EA treatment and the NBD peptide treatment both reduced infarct size, improved neurological scores, and regulated the levels of IL-1β and IL-13. The treatment reduced the expression of IKKα and IKKβ and altered the expression of NF-κB p65 and IκBα in the cytoplasm and nucleus; the activity of NF-κB was effectively reduced. We conclude that EA treatment might interfere with the process of NF-κB nuclear translocation. And it also could suppress the activity of NF-κB signaling pathway to ameliorate the inflammatory injury after focal cerebral ischemia/reperfusion.
ISSN:1741-427X
1741-4288
DOI:10.1155/2013/924541