Trans-dominant negative effects of pathogenic PSEN1 mutations on γ-secretase activity and Aβ production

Mutations in the PSEN1 gene encoding Presenilin-1 (PS1) are the predominant cause of familial Alzheimer's disease (FAD), but the underlying mechanisms remain unresolved. To reconcile the dominant action of pathogenic PSEN1 mutations with evidence that they confer a loss of mutant protein functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2013-07, Vol.33 (28), p.11606-11617
Hauptverfasser: Heilig, Elizabeth A, Gutti, Usha, Tai, Tara, Shen, Jie, Kelleher, 3rd, Raymond J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutations in the PSEN1 gene encoding Presenilin-1 (PS1) are the predominant cause of familial Alzheimer's disease (FAD), but the underlying mechanisms remain unresolved. To reconcile the dominant action of pathogenic PSEN1 mutations with evidence that they confer a loss of mutant protein function, we tested the hypothesis that PSEN1 mutations interfere with γ-secretase activity in a dominant-negative manner. Here, we show that pathogenic PSEN1 mutations act in cis to impair mutant PS1 function and act in trans to inhibit wild-type PS1 function. Coexpression of mutant and wild-type PS1 at equal gene dosage in presenilin-deficient mouse embryo fibroblasts resulted in trans-dominant-negative inhibition of wild-type PS1 activity, suppressing γ-secretase-dependent cleavage of APP and Notch. Surprisingly, mutant PS1 could stimulate production of Aβ42 by wild-type PS1 while decreasing its production of Aβ40. Mutant and wild-type PS1 efficiently coimmunoprecipitated, suggesting that mutant PS1 interferes with wild-type PS1 activity via physical interaction. These results support the conclusion that mutant PS1 causes wild-type PS1 to adopt an altered conformation with impaired catalytic activity and substrate specificity. Our findings reveal a novel mechanism of action for pathogenic PSEN1 mutations and suggest that dominant-negative inhibition of presenilin activity plays an important role in FAD pathogenesis.
ISSN:1529-2401
0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.0954-13.2013