Drug-target interaction prediction through domain-tuned network-based inference

The identification of drug-target interaction (DTI) represents a costly and time-consuming step in drug discovery and design. Computational methods capable of predicting reliable DTI play an important role in the field. Recently, recommendation methods relying on network-based inference (NBI) have b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2013-08, Vol.29 (16), p.2004-2008
Hauptverfasser: Alaimo, Salvatore, Pulvirenti, Alfredo, Giugno, Rosalba, Ferro, Alfredo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The identification of drug-target interaction (DTI) represents a costly and time-consuming step in drug discovery and design. Computational methods capable of predicting reliable DTI play an important role in the field. Recently, recommendation methods relying on network-based inference (NBI) have been proposed. However, such approaches implement naive topology-based inference and do not take into account important features within the drug-target domain. In this article, we present a new NBI method, called domain tuned-hybrid (DT-Hybrid), which extends a well-established recommendation technique by domain-based knowledge including drug and target similarity. DT-Hybrid has been extensively tested using the last version of an experimentally validated DTI database obtained from DrugBank. Comparison with other recently proposed NBI methods clearly shows that DT-Hybrid is capable of predicting more reliable DTIs. DT-Hybrid has been developed in R and it is available, along with all the results on the predictions, through an R package at the following URL: http://sites.google.com/site/ehybridalgo/.
ISSN:1367-4803
1367-4811
1460-2059
DOI:10.1093/bioinformatics/btt307