Transient domoic acid excitotoxicity increases BDNF expression and activates both MEK- and PKA-dependent neurogenesis in organotypic hippocampal slices

We have previously reported evidence of cell proliferation and increased neurogenesis in rat organotypic hippocampal slice cultures (OHSC) after a transient excitotoxic injury to the hippocampal CA1 area induced by low concentrations of the AMPA/kainate agonist domoic acid (DOM). An increased baseli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC neuroscience 2013-07, Vol.14 (1), p.72-72, Article 72
Hauptverfasser: Pérez-Gómez, Anabel, Tasker, R Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have previously reported evidence of cell proliferation and increased neurogenesis in rat organotypic hippocampal slice cultures (OHSC) after a transient excitotoxic injury to the hippocampal CA1 area induced by low concentrations of the AMPA/kainate agonist domoic acid (DOM). An increased baseline rate of neurogenesis may contribute to recovery from DOM-induced mild injury but the intracellular mechanism(s) responsible for neuronal proliferation remain unclear. The current study investigated the key intracellular pathways responsible for DOM-induced neurogenesis in OHSC including the effects of transient excitotoxicity on the expression of brain-derived neurotrophic factor (BDNF), a well-known regulator of progenitor cell mitosis. Application of a low concentration of DOM (2 μM) for 24 h followed by recovery induced a significant and long lasting increase in BDNF protein levels expressed by both neurons and microglial cells. Furthermore, the mild DOM toxicity stimulated both PKA and MEK-dependent intracellular signaling cascades and induced a significant increase in BDNF- transcription factor CREB activation and BDNF-receptor TrkB expression. Coexposure to specific inhibitors of PKA and MEK phosphorylation resulted in a significant decrease in the neurogenic marker doublecortin. Our results suggest that transient excitotoxic insult induced by DOM produces BDNF and CREB overexpression via MEK and PKA pathways and that both pathways mediate, at least in part, the increased neural proliferation resulting from mild excitotoxicity.
ISSN:1471-2202
1471-2202
DOI:10.1186/1471-2202-14-72