Visually induced postural reactivity is velocity-dependent at low temporal frequencies and frequency-dependent at high temporal frequencies

Visual stimulation alone is sufficient to produce visually induced postural reactivity (VIPR). While some studies have shown that VIPR increases with the velocity of a moving visual stimulus, others have shown that it decreases with the temporal frequency of an oscillating visual stimulus. These res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 2013-08, Vol.229 (1), p.75-84
Hauptverfasser: Hanssens, J.-M., Allard, R., Giraudet, G., Faubert, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Visual stimulation alone is sufficient to produce visually induced postural reactivity (VIPR). While some studies have shown that VIPR increases with the velocity of a moving visual stimulus, others have shown that it decreases with the temporal frequency of an oscillating visual stimulus. These results seem contradictory given that these two variables co-vary in the same direction. The purpose of this study is to determine whether the VIPR can be different depending on the frequency range being considered. Twelve subjects were placed standing up in a virtual reality environment that simulated a black and white checkerboard at floor level. This checkerboard oscillated at seven frequencies (0.03–2.0 Hz) and three amplitudes (2, 4, and 8°), corresponding to nine velocities (0.125–32°/s). The virtual floor oscillated from left to right (mediolateral) or from front to back (anteroposterior). We calculated the subjects’ mean velocity (Ω) based on data from electromagnetic sensors positioned on the head and lower back. Our experiment shows that for temporal frequencies below 0.12 Hz, VIPR is visually dependent and increases with stimulus velocity. When stimulus velocity becomes too high, the body becomes incapable of following, and the VIPR saturates between 0.12 and 0.25 Hz. In this frequency range, maximal postural oscillation seems to depend on biomechanical constraints imposed by the positioning of the feet. For frequencies above 0.5 Hz, the body can no longer maintain the same oscillation state. This saturation may be linked to proprioceptive feedback mechanisms in the postural system.
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-013-3592-3