Micromechanics and structural response of functionally graded, particulate-matrix, fiber-reinforced composites
Reinforcement of fibrous composites by stiff particles embedded in the matrix offers the potential for simple, economical functional grading, enhanced response to mechanical loads, and improved functioning at high temperatures. Here, we consider laminated plates made of such a material, with spheric...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2009-05, Vol.46 (10), p.2136-2150 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reinforcement of fibrous composites by stiff particles embedded in the matrix offers the potential for simple, economical functional grading, enhanced response to mechanical loads, and improved functioning at high temperatures. Here, we consider laminated plates made of such a material, with spherical reinforcement tailored by layer. The moduli for this material lie within relatively narrow bounds. Two separate moduli estimates are considered: a “two-step” approach in which fibers are embedded in a homogenized particulate matrix, and the Kanaun–Jeulin (Kanaun, S.K., Jeulin, D., 2001. Elastic properties of hybrid composites by the effective field approach. Journal of the Mechanics and Physics of Solids 49, 2339–2367) approach, which we re-derive in a simple way using the Benveniste (1988) method. Optimal tailoring of a plate is explored, and functional grading is shown to improve the performance of the structures considered. In the example of a square, simply supported, cross-ply laminated panel subjected to uniform transverse pressure, a modest functional grading offers significant improvement in performance. A second example suggests superior blast resistance of the panel achieved at the expense of only a small increase in weight. |
---|---|
ISSN: | 0020-7683 1879-2146 |
DOI: | 10.1016/j.ijsolstr.2008.08.010 |