Discovery of a kernel for controlling biomolecular regulatory networks
Cellular behavior is determined not by a single molecule but by many molecules that interact strongly with one another and form a complex network. It is unclear whether cellular behavior can be controlled by regulating certain molecular components in the network. By analyzing a variety of biomolecul...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2013-07, Vol.3 (1), p.2223, Article 2223 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cellular behavior is determined not by a single molecule but by many molecules that interact strongly with one another and form a complex network. It is unclear whether cellular behavior can be controlled by regulating certain molecular components in the network. By analyzing a variety of biomolecular regulatory networks, we discovered that only a small fraction of the network components need to be regulated to govern the network dynamics and control cellular behavior. We defined a minimal set of network components that must be regulated to make the cell reach a desired stable state as the control kernel and developed a general algorithm for identifying it. We found that the size of the control kernel was related to both the topological and logical characteristics of a network. Intriguingly, the control kernel of the human signaling network included many drug targets and chemical-binding interactions, suggesting therapeutic application of the control kernel. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep02223 |