Variation in seedling freezing response is associated with climate in Larrea
Variation in freezing severity is hypothesized to have influenced the distribution and evolution of the warm desert evergreen genus Larrea. If this hypothesis is correct, performance and survival of species and populations should vary predictably along gradients of freezing severity. If freezing env...
Gespeichert in:
Veröffentlicht in: | Oecologia 2012-05, Vol.169 (1), p.73-84 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Variation in freezing severity is hypothesized to have influenced the distribution and evolution of the warm desert evergreen genus Larrea. If this hypothesis is correct, performance and survival of species and populations should vary predictably along gradients of freezing severity. If freezing environment changes in the future, the ability of Larrea to adapt will depend on the structure of variation for freezing resistance within populations. To test whether freezing responses vary among and within Larrea populations, we grew maternal families of seedlings from high and low latitude L. divaricata and high latitude L. tridentata populations in a common garden. We measured survival, projected plant area and dark-adapted chlorophyll fluorescence (F v /F m ) before and after cold acclimation and for 2 weeks following a single freeze. We detected significant variation in freezing resistance among species and populations. Maternal family lines differed significantly in their responses to cold acclimation and/or freezing for two out of the three populations: among L. tridentata maternal families and among low latitude L. divaricata maternal families. There were no significant differences across maternal families of high latitude L. divaricata. Our results indicate that increased freezing resistance in high latitude populations likely facilitated historical population expansion of both species into colder climates, but this may have occurred to a greater extent for L. tridentata than for L. divaricata. Differences in the structure of variation for cold acclimation and freezing responses among populations suggest potential differences in their ability to evolve in response to future changes in freezing severity. |
---|---|
ISSN: | 0029-8549 1432-1939 |
DOI: | 10.1007/s00442-011-2181-z |