Dissociation of systemic and renal effects in endotoxemia. Prostaglandin inhibition uncovers an important role of renal nerves

To elucidate the mechanisms responsible for systemic and renal hemodynamic changes in early endotoxemia, the roles of prostaglandins (PG) and renal nerves were investigated. Endotoxin (E, 3 micrograms/kg i.v.) was given to two groups of anesthetized dogs that had undergone unilateral renal denervati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 1982-03, Vol.69 (3), p.691-699
Hauptverfasser: Henrich, W L, Hamasaki, Y, Said, S I, Campbell, W B, Cronin, R E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To elucidate the mechanisms responsible for systemic and renal hemodynamic changes in early endotoxemia, the roles of prostaglandins (PG) and renal nerves were investigated. Endotoxin (E, 3 micrograms/kg i.v.) was given to two groups of anesthetized dogs that had undergone unilateral renal denervation: Group I (n = 9) E only; Group II (n = 11) E + indomethacin (10 mg/kg i.v.) or meclofenamate (5 mg/kg i.v.). A third group of dogs (Group III, n = 5) received indomethacin (10 mg/kg i.v.) only. 1 h after E group I dogs, mean arterial pressure (MAP) decreased from 126 to 94 mm Hg (P less than 0.001), and prostacyclin (6-keto-Fl alpha metabolite, PGI2) increased (from 0.64 to 2.08 ng/ml, P less than 0.005). Glomerular filtration rate (GFR) and renal blood flow (RBF) declined comparably both in innervated and denervated kidneys. In marked contrast, group II dogs had a stable MAP (136-144 mm Hg, NS) and no increase in PGI2 levels. Plasma renin activity (0.7-2.5 ng/ml per h, P less than 0.005) increased, and renin secretion was greater in innervated compared with denervated kidneys (255 vs. 74 U/min, P less than 0.01) in these PG-inhibited dogs. In addition, denervated kidneys in group II dogs had a greater GFR (42 vs. 34 ml/min, P less than 0.01) and RFB (241 vs. 182 ml/min, P less than 0.01) than innervated kidneys after E. Group III animals had no significant changes in systemic or renal hemodynamics, plasma renin activity or PGI2 during the study. These results suggest that PGI2 mediates the systemic hypotension of early endotoxemia in the PG-intact animal. Moreover, PG inhibition uncovers an important effect of E to increase efferent renal nerve activity with a consequent decline in GFR and RBF independent of changes in MAP. Finally, the results demonstrate that renal nerves are important stimuli to renin secretion in early endotoxemia via pathways that are PG-independent.
ISSN:0021-9738
DOI:10.1172/jci110497