Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides

Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2013-06, Vol.4 (1), p.1944-1944, Article 1944
Hauptverfasser: Shin, Heedeuk, Qiu, Wenjun, Jarecki, Robert, Cox, Jonathan A., Olsson, Roy H., Starbuck, Andrew, Wang, Zheng, Rakich, Peter T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic–phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized—with over 1,000 times larger nonlinearity than reported in previous systems—yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip. Exploiting photon–phonon coupling in nanoscale silicon waveguides could enable a host of powerful features in photonic devices. Using a hybrid photonic–phononic waveguide structure, Shin et al . show stimulated Brillouin scattering nonlinearities and gain, which offers new on-chip signal-processing abilities.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms2943