PI3K regulation of the SKP-2/p27 axis through mTORC2

The cyclin-dependent kinase inhibitor p27 is a key regulator of cell-cycle progression. Its expression and localization are altered in several types of malignancies, which has prognostic significance in cancers such as renal cell carcinoma (RCC). S-phase kinase-associated protein 2 (SKP-2) is an F-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2013-04, Vol.32 (16), p.2027-2036
Hauptverfasser: Shanmugasundaram, K, Block, K, Nayak, B K, Livi, C B, Venkatachalam, M A, Sudarshan, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cyclin-dependent kinase inhibitor p27 is a key regulator of cell-cycle progression. Its expression and localization are altered in several types of malignancies, which has prognostic significance in cancers such as renal cell carcinoma (RCC). S-phase kinase-associated protein 2 (SKP-2) is an F-box protein that is part of the SKP-1/Cul1/F-box ubiquitin ligase complex that targets nuclear p27 among many other cell-cycle proteins for proteosomal degradation. Its overexpression has been observed in several tumor types. Signaling by phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) has previously been shown to regulate the SKP-2/p27 axis. Recent evidence suggests that PI3K signaling may activate mammalian target of rapamycin complex 2 (mTORC2) activity. As PI3K signaling is known to regulate SKP-2 and p27, we sought to determine whether these effects were mediated by mTORC2. Here we provide additional genetic evidence that PI3K signaling activates mTORC2 kinase activity. We also demonstrate a novel role for mTORC2 in the modulation of nuclear p27 levels. In particular, mTORC2 signaling promotes the reduction of nuclear p27 protein levels through the increased protein expression of SKP-2. These are the first data to demonstrate a role for mTOR in the regulation of SKP-2. In concordance with these findings, mTORC2 activity promotes cell proliferation of RCC cells at the G1–S interphase of the cell cycle. Collectively, these data implicate mTORC2 signaling in the regulation of the SKP-2/p27 axis, a signaling node commonly altered in cancer.
ISSN:0950-9232
1476-5594
DOI:10.1038/onc.2012.226