Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells

Mesenchymal stem cells (MSCs) are adult, multipotent, stem cells with immunomodulatory properties. The mechanisms involved in the capacity of MSCs to inhibit the proliferation of proinflammatory T lymphocytes, which appear responsible for causing autoimmune disease, have yet to be fully elucidated....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cell research & therapy 2013-06, Vol.4 (3), p.65-65, Article 65
Hauptverfasser: Luz-Crawford, Patricia, Kurte, Monica, Bravo-Alegría, Javiera, Contreras, Rafael, Nova-Lamperti, Estefania, Tejedor, Gautier, Noël, Danièle, Jorgensen, Christian, Figueroa, Fernando, Djouad, Farida, Carrión, Flavio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mesenchymal stem cells (MSCs) are adult, multipotent, stem cells with immunomodulatory properties. The mechanisms involved in the capacity of MSCs to inhibit the proliferation of proinflammatory T lymphocytes, which appear responsible for causing autoimmune disease, have yet to be fully elucidated. One of the underlying mechanisms studied recently is the ability of MSCs to generate T regulatory (Treg) cells in vitro and in vivo from activated peripheral blood mononuclear cells (PBMC), T-CD4+ and also T-CD8(+) cells. In the present work we investigated the capacity of MSCs to generate Treg cells using T-CD4(+) cells induced to differentiate toward the proinflammatory Th1 and Th17 lineages. MSCs were obtained from mouse bone marrow and characterized according to their surface antigen expression and their multilineage differentiation potential. CD4(+) T cells isolated from mouse spleens were induced to differentiate into Th1 or Th17 cells and co-cultured with MSCs added at day 0, 2 or 4 of the differentiation processes. After six days, CD25, Foxp3, IL-17 and IFN-γ expression was assessed by flow cytometry and helios and neuropilin 1 mRNA levels were assessed by RT-qPCR. For the functional assays, the 'conditioned' subpopulation generated in the presence of MSCs was cultured with concanavalin A-activated CD4(+) T cells labeled with carboxyfluorescein succinimidyl ester. Finally, we used the encephalomyelitis autoimmune diseases (EAE) mouse model, in which mice were injected with MSCs at day 18 and 30 after immunization. At day 50, the mice were euthanized and draining lymph nodes were extracted for Th1, Th17 and Treg detection by flow cytometry. MSCs were able to suppress the proliferation, activation and differentiation of CD4(+) T cells induced to differentiate into Th1 and Th17 cells. This substantial suppressive effect was associated with an increase of the percentage of functional induced CD4(+)CD25(+)Foxp3(+) regulatory T cells and IL-10 secretion. However, using mature Th1 or Th17 cells our results demonstrated that while MSCs suppress the proliferation and phenotype of mature Th1 and Th17 cells they did not generate Treg cells. Finally, we showed that the beneficial effect observed following MSC injection in an EAE mouse model was associated with the suppression of Th17 cells and an increase in the percentage of CD4(+)CD25(+)Foxp3(+) T lymphocytes when administrated at early stages of the disease. This study demonstrated that MSCs contribute to the gen
ISSN:1757-6512
1757-6512
DOI:10.1186/scrt216