Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks
A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone t...
Gespeichert in:
Veröffentlicht in: | Journal of biomolecular NMR 2013-07, Vol.56 (3), p.227-241 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | 3 |
container_start_page | 227 |
container_title | Journal of biomolecular NMR |
container_volume | 56 |
creator | Shen, Yang Bax, Ad |
description | A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (
ϕ
,
ψ
) torsion angles of ca 12º. TALOS-N also reports sidechain χ
1
rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts. |
doi_str_mv | 10.1007/s10858-013-9741-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3701756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1393787430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c617t-f3b9b5c232d018152c239c36f3aad5281f75ff89b200ed4d5ee338c734164af43</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERbeFH8AFWeLCJeCPOLYvSKiiBakUhOBsOc54121ib-0EtP--LluqgoQ4jTXzzDszfhF6TslrSoh8UyhRQjWE8kbLlja7R2hFheSNIIQ-RiuimWiY5OoQHZVySQjRinVP0CHjkimh2Qpdf8lphhBxb91VnyJgGwdcwgBuY2t6TrmEFGt2PULB2wxDcDMM2Oc04YtPX7HbwBScHXHZBD8XvJQQ19jmOfjgQs1HWPKvMP9M-ao8RQfejgWe3cVj9P30_beTD83557OPJ-_OG9dROTee97oXjnE2EKqoYPWpHe88t3YQTFEvhfdK94wQGNpBAHCunOQt7VrrW36M3u51t0s_weAgznUNs81hsnlnkg3mz0oMG7NOPwyXhErRVYFXdwI5XS9QZjOF4mAcbYS0FEPbTvE6T7f_R7nmUsmWk4q-_Au9TEuO9ScqJTnXHZO6UnRPuZxKyeDv96bE3Hpv9t6b6r259d7sas-Lhwffd_w2uwJsD5RaimvID0b_U_UGDZW8JQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1373396279</pqid></control><display><type>article</type><title>Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Shen, Yang ; Bax, Ad</creator><creatorcontrib>Shen, Yang ; Bax, Ad</creatorcontrib><description>A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (
ϕ
,
ψ
) torsion angles of ca 12º. TALOS-N also reports sidechain χ
1
rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.</description><identifier>ISSN: 0925-2738</identifier><identifier>EISSN: 1573-5001</identifier><identifier>DOI: 10.1007/s10858-013-9741-y</identifier><identifier>PMID: 23728592</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Biochemistry ; Biological and Medical Physics ; Biophysics ; Models, Molecular ; Neural Networks (Computer) ; Nuclear Magnetic Resonance, Biomolecular ; Physics ; Physics and Astronomy ; Protein Conformation ; Proteins - chemistry ; Reproducibility of Results ; Software ; Spectroscopy/Spectrometry</subject><ispartof>Journal of biomolecular NMR, 2013-07, Vol.56 (3), p.227-241</ispartof><rights>Springer Science+Business Media Dordrecht (outside the USA) 2013</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c617t-f3b9b5c232d018152c239c36f3aad5281f75ff89b200ed4d5ee338c734164af43</citedby><cites>FETCH-LOGICAL-c617t-f3b9b5c232d018152c239c36f3aad5281f75ff89b200ed4d5ee338c734164af43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10858-013-9741-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10858-013-9741-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23728592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Bax, Ad</creatorcontrib><title>Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks</title><title>Journal of biomolecular NMR</title><addtitle>J Biomol NMR</addtitle><addtitle>J Biomol NMR</addtitle><description>A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (
ϕ
,
ψ
) torsion angles of ca 12º. TALOS-N also reports sidechain χ
1
rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.</description><subject>Algorithms</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Models, Molecular</subject><subject>Neural Networks (Computer)</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>Spectroscopy/Spectrometry</subject><issn>0925-2738</issn><issn>1573-5001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhi1ERbeFH8AFWeLCJeCPOLYvSKiiBakUhOBsOc54121ib-0EtP--LluqgoQ4jTXzzDszfhF6TslrSoh8UyhRQjWE8kbLlja7R2hFheSNIIQ-RiuimWiY5OoQHZVySQjRinVP0CHjkimh2Qpdf8lphhBxb91VnyJgGwdcwgBuY2t6TrmEFGt2PULB2wxDcDMM2Oc04YtPX7HbwBScHXHZBD8XvJQQ19jmOfjgQs1HWPKvMP9M-ao8RQfejgWe3cVj9P30_beTD83557OPJ-_OG9dROTee97oXjnE2EKqoYPWpHe88t3YQTFEvhfdK94wQGNpBAHCunOQt7VrrW36M3u51t0s_weAgznUNs81hsnlnkg3mz0oMG7NOPwyXhErRVYFXdwI5XS9QZjOF4mAcbYS0FEPbTvE6T7f_R7nmUsmWk4q-_Au9TEuO9ScqJTnXHZO6UnRPuZxKyeDv96bE3Hpv9t6b6r259d7sas-Lhwffd_w2uwJsD5RaimvID0b_U_UGDZW8JQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Shen, Yang</creator><creator>Bax, Ad</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks</title><author>Shen, Yang ; Bax, Ad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c617t-f3b9b5c232d018152c239c36f3aad5281f75ff89b200ed4d5ee338c734164af43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Models, Molecular</topic><topic>Neural Networks (Computer)</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>Spectroscopy/Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Bax, Ad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomolecular NMR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yang</au><au>Bax, Ad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks</atitle><jtitle>Journal of biomolecular NMR</jtitle><stitle>J Biomol NMR</stitle><addtitle>J Biomol NMR</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>56</volume><issue>3</issue><spage>227</spage><epage>241</epage><pages>227-241</pages><issn>0925-2738</issn><eissn>1573-5001</eissn><abstract>A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (
ϕ
,
ψ
) torsion angles of ca 12º. TALOS-N also reports sidechain χ
1
rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>23728592</pmid><doi>10.1007/s10858-013-9741-y</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2738 |
ispartof | Journal of biomolecular NMR, 2013-07, Vol.56 (3), p.227-241 |
issn | 0925-2738 1573-5001 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3701756 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Algorithms Biochemistry Biological and Medical Physics Biophysics Models, Molecular Neural Networks (Computer) Nuclear Magnetic Resonance, Biomolecular Physics Physics and Astronomy Protein Conformation Proteins - chemistry Reproducibility of Results Software Spectroscopy/Spectrometry |
title | Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20backbone%20and%20sidechain%20torsion%20angles%20predicted%20from%20NMR%20chemical%20shifts%20using%20artificial%20neural%20networks&rft.jtitle=Journal%20of%20biomolecular%20NMR&rft.au=Shen,%20Yang&rft.date=2013-07-01&rft.volume=56&rft.issue=3&rft.spage=227&rft.epage=241&rft.pages=227-241&rft.issn=0925-2738&rft.eissn=1573-5001&rft_id=info:doi/10.1007/s10858-013-9741-y&rft_dat=%3Cproquest_pubme%3E1393787430%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1373396279&rft_id=info:pmid/23728592&rfr_iscdi=true |