Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomolecular NMR 2013-07, Vol.56 (3), p.227-241
Hauptverfasser: Shen, Yang, Bax, Ad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ( ϕ , ψ ) torsion angles of ca 12º. TALOS-N also reports sidechain χ 1 rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.
ISSN:0925-2738
1573-5001
DOI:10.1007/s10858-013-9741-y