Auditory Cortex Represents Both Pitch Judgments and the Corresponding Acoustic Cues

The neural processing of sensory stimuli involves a transformation of physical stimulus parameters into perceptual features, and elucidating where and how this transformation occurs is one of the ultimate aims of sensory neurophysiology. Recent studies have shown that the firing of neurons in early...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2013-04, Vol.23 (7), p.620-625
Hauptverfasser: Bizley, Jennifer K., Walker, Kerry M.M., Nodal, Fernando R., King, Andrew J., Schnupp, Jan W.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The neural processing of sensory stimuli involves a transformation of physical stimulus parameters into perceptual features, and elucidating where and how this transformation occurs is one of the ultimate aims of sensory neurophysiology. Recent studies have shown that the firing of neurons in early sensory cortex can be modulated by multisensory interactions [1–5], motor behavior [1, 3, 6, 7], and reward feedback [1, 8, 9], but it remains unclear whether neural activity is more closely tied to perception, as indicated by behavioral choice, or to the physical properties of the stimulus. We investigated which of these properties are predominantly represented in auditory cortex by recording local field potentials (LFPs) and multiunit spiking activity in ferrets while they discriminated the pitch of artificial vowels. We found that auditory cortical activity is informative both about the fundamental frequency (F0) of a target sound and also about the pitch that the animals appear to perceive given their behavioral responses. Surprisingly, although the stimulus F0 was well represented at the onset of the target sound, neural activity throughout auditory cortex frequently predicted the reported pitch better than the target F0. ► Auditory cortical responses were recorded while ferrets discriminated pitch shifts ► LFP and multiunit activity are sensitive to the sound’s fundamental frequency (F0) ► Neural activity related to animals’ reported pitch increases throughout the trial ► Cortical responses were more informative about behavioral choices than the sound F0
ISSN:0960-9822
1879-0445
DOI:10.1016/j.cub.2013.03.003