The Papaver Self-Incompatibility Pollen S-Determinant, PrpS, Functions in Arabidopsis thaliana
Many angiosperms use specific interactions between pollen and pistil proteins as “self” recognition and/or rejection mechanisms to prevent self-fertilization. Self-incompatibility (SI) is encoded by a multiallelic S locus, comprising pollen and pistil S-determinants [1, 2]. In Papaver rhoeas, cognat...
Gespeichert in:
Veröffentlicht in: | Current biology 2012-01, Vol.22 (2), p.154-159 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many angiosperms use specific interactions between pollen and pistil proteins as “self” recognition and/or rejection mechanisms to prevent self-fertilization. Self-incompatibility (SI) is encoded by a multiallelic S locus, comprising pollen and pistil S-determinants [1, 2]. In Papaver rhoeas, cognate pistil and pollen S-determinants, PrpS, a pollen-expressed transmembrane protein, and PrsS, a pistil-expressed secreted protein [3, 4], interact to trigger a Ca2+-dependent signaling network [5–10], resulting in inhibition of pollen tube growth, cytoskeletal alterations [11–13], and programmed cell death (PCD) [14, 15] in incompatible pollen. We introduced the PrpS gene into Arabidopsis thaliana, a self-compatible model plant. Exposing transgenic A. thaliana pollen to recombinant Papaver PrsS protein triggered remarkably similar responses to those observed in incompatible Papaver pollen: S-specific inhibition and hallmark features of Papaver SI [11–15]. Our findings demonstrate that Papaver PrpS is functional in a species with no SI system that diverged ∼140 million years ago [16]. This suggests that the Papaver SI system uses cellular targets that are, perhaps, common to all eudicots and that endogenous signaling components can be recruited to elicit a response that most likely never operated in this species. This will be of interest to biologists interested in the evolution of signaling networks in higher plants.
► PrpS, a Papaver SI determinant, functions in Arabidopsis thaliana pollen ► A “self” interaction with PrsS reveals Papaver SI hallmark features in A. thaliana ► The first evidence for transfamily functionality of an SI system (>140 my apart) ► Evidence of recruitment of signaling components for novel SI function |
---|---|
ISSN: | 0960-9822 1879-0445 |
DOI: | 10.1016/j.cub.2011.12.006 |