Algorithmic requirements for swarm intelligence in differently coupled collective systems

Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals solitons and fractals, 2013-05, Vol.50 (100), p.100-114
Hauptverfasser: Stradner, Jürgen, Thenius, Ronald, Zahadat, Payam, Hamann, Heiko, Crailsheim, Karl, Schmickl, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments.
ISSN:0960-0779
1873-2887
DOI:10.1016/j.chaos.2013.01.011