Bioactive Surface Modification of Hydroxyapatite

The purpose of this study was to establish an acid-etching procedure for altering the Ca/P ratio of the nanostructured surface of hydroxyapatite (HAP) by using surface chemical and morphological analyses (XPS, XRD, SEM, surface roughness, and wettability) and to evaluate the in vitro response of ost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2013-01, Vol.2013 (2013), p.1-9
Hauptverfasser: Hirata, Isao, Nogami, Keisuke, Yasuda, Keisuke, Hiasa, Kyou, Okazaki, Yohei, Abe, Yasuhiko, Mizumachi, Wataru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study was to establish an acid-etching procedure for altering the Ca/P ratio of the nanostructured surface of hydroxyapatite (HAP) by using surface chemical and morphological analyses (XPS, XRD, SEM, surface roughness, and wettability) and to evaluate the in vitro response of osteoblast-like cells (MC3T3-E1 cells) to the modified surfaces. This study utilized HAP and HAP treated with 10%, 20%, 30%, 40%, 50%, or 60% phosphoric acid solution for 10 minutes at 25°C, followed by rinsing 3 times with ultrapure water. The 30% phosphoric acid etching process that provided a Ca/P ratio of 1.50, without destruction of the grain boundary of HAP, was selected as a surface-modification procedure. Additionally, HAP treated by the 30% phosphoric acid etching process was stored under dry conditions at 25°C for 12 hours, and the Ca/P ratio approximated to 1.00 accidentally. The initial adhesion, proliferation, and differentiation (alkaline phosphatase (ALP) activity and relative mRNA level for ALP) of MC3T3-E1 cells on the modified surfaces were significantly promoted (P
ISSN:2314-6133
2314-6141
DOI:10.1155/2013/626452