Deep Learning with Hierarchical Convolutional Factor Analysis

Unsupervised multilayered ("deep") models are considered for imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2013-08, Vol.35 (8), p.1887-1901
Hauptverfasser: Bo Chen, Polatkan, G., Sapiro, G., Blei, D., Dunson, D., Carin, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unsupervised multilayered ("deep") models are considered for imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis that explicitly exploit the convolutional nature of the expansion. To address large-scale and streaming data, an online version of VB is also developed. The number of dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2013.19