Kidney-Targeted Transplantation of Mesenchymal Stem Cells by Ultrasound-Targeted Microbubble Destruction Promotes Kidney Repair in Diabetic Nephropathy Rats

We test the hypothesis that ultrasound-targeted microbubble destruction (UTMD) technique increases the renoprotective effect of kidney-targeted transplantation of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in diabetic nephropathy (DN) rats. Diabetes was induced by streptozotocin injection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2013-01, Vol.2013 (2013), p.1-13
Hauptverfasser: Li, Peijing, Yang, Dan, Liu, Zheng, Zhuo, Zhongxiong, Tan, Kaibin, Gao, Yunhua, Wang, Gong, Ye, Chuan, Zhang, Yi, Xia, Hongmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We test the hypothesis that ultrasound-targeted microbubble destruction (UTMD) technique increases the renoprotective effect of kidney-targeted transplantation of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in diabetic nephropathy (DN) rats. Diabetes was induced by streptozotocin injection (60 mg/Kg, intraperitoneally) in Sprague-Dawley rats. MSCs were administered alone or in combination with UTMD to DN rats at 4 weeks after diabetes onset. Random blood glucose concentrations were measured at 1, 2, 4, and 8 weeks, and plasma insulin levels, urinary albumin excretion rate (UAER) values, the structures of pancreas and kidney, the expressions of TGF-β1, synaptopodin, and IL-10 were assessed at 8 weeks after MSCs transplantation. MSCs transplantation decreased blood glucose concentrations and attenuated pancreatic islets/β cells damage. The permeability of renal interstitial capillaries and VCAM-1 expression increased after UTMD, which enhanced homing and retention of MSCs to kidneys. MSCs transplantation together with UTMD prevented renal damage and decreased UAER values by inhibiting TGF-β1 expression and upregulating synaptopodin and IL-10 expression. We conclude that MSCs transplantation reverts hyperglycemia; UTMD technique noninvasively increases the homing of MSCs to kidneys and promotes renal repair in DN rats. This noninvasive cell delivery method may be feasible and efficient as a novel approach for personal MSCs therapy to diabetic nephropathy.
ISSN:2314-6133
2314-6141
DOI:10.1155/2013/526367