Spatial segregation of polarity factors into distinct cortical clusters is required for cell polarity control

Cell polarity is regulated by evolutionarily conserved polarity factors whose precise higher-order organization at the cell cortex is largely unknown. Here we image frontally the cortex of live fission yeast cells using time-lapse and super-resolution microscopy. Interestingly, we find that polarity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2013-05, Vol.4 (1), p.1834-1834, Article 1834
Hauptverfasser: Dodgson, James, Chessel, Anatole, Yamamoto, Miki, Vaggi, Federico, Cox, Susan, Rosten, Edward, Albrecht, David, Geymonat, Marco, Csikasz-Nagy, Attila, Sato, Masamitsu, Carazo-Salas, Rafael E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell polarity is regulated by evolutionarily conserved polarity factors whose precise higher-order organization at the cell cortex is largely unknown. Here we image frontally the cortex of live fission yeast cells using time-lapse and super-resolution microscopy. Interestingly, we find that polarity factors are organized in discrete cortical clusters resolvable to ~50–100 nm in size, which can form and become cortically enriched by oligomerization. We show that forced co-localization of the polarity factors Tea1 and Tea3 results in polarity defects, suggesting that the maintenance of both factors in distinct clusters is required for polarity. However, during mitosis, their co-localization increases, and Tea3 helps to retain the cortical localization of the Tea1 growth landmark in preparation for growth reactivation following mitosis. Thus, regulated spatial segregation of polarity factor clusters provides a means to spatio-temporally control cell polarity at the cell cortex. We observe similar clusters in Saccharomyces cerevisiae and Caenorhabditis elegans cells, indicating this could be a universal regulatory feature. Cell polarity is generated and maintained by the spatial accumulation of polarity factors. By imaging fission yeast cells ‘end-on’, the authors show that the polarity factors Tea1 and Tea3 segregate into distinct clusters, and that surprisingly, their segregation is critical for cell polarization.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms2813