Reciprocal Regulation of Protein Kinase and Pyruvate Kinase Activities of Pyruvate Kinase M2 by Growth Signals

Pyruvate kinase isoform M2 (PKM2) is an enzyme-catalyzing conversion of phosphoenolpyruvate to pyruvate in the glycolysis pathway. It was demonstrated that PKM2 interacts with tyrosine phosphopeptide, and the interaction with the tyrosine phosphopeptide affects the pyruvate kinase activity of PKM2....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-05, Vol.288 (22), p.15971-15979
Hauptverfasser: Gao, Xueliang, Wang, Haizhen, Yang, Jenny J., Chen, Jing, Jie, Jiang, Li, Liangwei, Zhang, Yinwei, Liu, Zhi-Ren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pyruvate kinase isoform M2 (PKM2) is an enzyme-catalyzing conversion of phosphoenolpyruvate to pyruvate in the glycolysis pathway. It was demonstrated that PKM2 interacts with tyrosine phosphopeptide, and the interaction with the tyrosine phosphopeptide affects the pyruvate kinase activity of PKM2. Our experiments suggest that PKM2 is also an active protein kinase (Gao, X., Wang, H., Yang, J. J., Liu, X., and Liu, Z. R. (2012) Mol. Cell 45, 598–609). We report here that growth signals reciprocally regulate the pyruvate kinase and protein kinase activities of PKM2 by different mechanisms. On the one hand, growth signals induce protein tyrosine phosphorylations. The tyrosine-phosphorylated protein(s) regulates the conversion of pyruvate kinase and protein kinase of PKM2 by directly interacting with PKM2. Binding of the tyrosyl-phosphorylated proteins at the fructose 1,6-bisphosphate-binding site converts the tetrameric PKM2 to a dimer. On the other hand, growth stimulations also lead to PKM2 phosphorylation, which consequently regulates the conversion of protein kinase and pyruvate kinase activities. Growth factor stimulations significantly increase the dimer/tetramer PKM2 ratio in cells and consequently activate the protein kinase activity of PKM2. Our study suggests that the conversion between the pyruvate kinase and protein kinase activities of PKM2 may be an important mechanism mediating the effects of growth signals in promoting cell proliferation. Background: Pyruvate kinase M2 is also a protein kinase. It is not known how the pyruvate kinase and protein kinase are controlled. Results: Growth stimulations increase the dimer/tetramer PKM2 ratio and activate the protein kinase activity of PKM2. Conclusion: The growth signals reciprocally regulate the pyruvate kinase and protein kinase activities of PKM2. Significance: Studies reveal an important example regarding how cancer cells cope with bioenergetic stress during growth.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M112.448753