Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle

We develop a novel large-scale kinematic model for animating the left ventricle (LV) wall and use this model to drive the fluid–structure interaction (FSI) between the ensuing blood flow and a mechanical heart valve prosthesis implanted in the aortic position of an anatomic LV/aorta configuration. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2013-07, Vol.244, p.41-62
Hauptverfasser: Le, Trung Bao, Sotiropoulos, Fotis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a novel large-scale kinematic model for animating the left ventricle (LV) wall and use this model to drive the fluid–structure interaction (FSI) between the ensuing blood flow and a mechanical heart valve prosthesis implanted in the aortic position of an anatomic LV/aorta configuration. The kinematic model is of lumped type and employs a cell-based, FitzHugh–Nagumo framework to simulate the motion of the LV wall in response to an excitation wavefront propagating along the heart wall. The emerging large-scale LV wall motion exhibits complex contractile mechanisms that include contraction (twist) and expansion (untwist). The kinematic model is shown to yield global LV motion parameters that are well within the physiologic range throughout the cardiac cycle. The FSI between the leaflets of the mechanical heart valve and the blood flow driven by the dynamic LV wall motion and mitral inflow is simulated using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, 2007; Borazjani et al., 2008) [1,2] implemented in conjunction with a domain decomposition approach. The computed results show that the simulated flow patterns are in good qualitative agreement with in vivo observations. The simulations also reveal complex kinematics of the valve leaflets, thus, underscoring the need for patient-specific simulations of heart valve prosthesis and other cardiac devices.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2012.08.036