Genetic interaction between pku300 and fbn2b controls endocardial cell proliferation and valve development in zebrafish

Abnormal cardiac valve morphogenesis is a common cause of human congenital heart disease. The molecular mechanisms regulating endocardial cell proliferation and differentiation into cardiac valves remain largely unknown, although great progress has been made on the endocardial contribution to the at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2013-03, Vol.126 (Pt 6), p.1381-1391
Hauptverfasser: Wang, Xu, Yu, Qingming, Wu, Qing, Bu, Ye, Chang, Nan-Nan, Yan, Shouyu, Zhou, Xiao-Hai, Zhu, Xiaojun, Xiong, Jing-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abnormal cardiac valve morphogenesis is a common cause of human congenital heart disease. The molecular mechanisms regulating endocardial cell proliferation and differentiation into cardiac valves remain largely unknown, although great progress has been made on the endocardial contribution to the atrioventricular cushion and valve formation. We found that scotch tape(te382) (sco(te382)) encodes a novel transmembrane protein that is crucial for endocardial cell proliferation and heart valve development. The zebrafish sco(te382) mutant showed diminished endocardial cell proliferation, lack of heart valve leaflets and abnormal common cardinal and caudal veins. Positional cloning revealed a C946T nonsense mutation of a novel gene pku300 in the sco(te382) locus, which encoded a 540-amino-acid protein on cell membranes with one putative transmembrane domain and three IgG domains. A known G3935T missense mutation of fbn2b was also found ∼570 kb away from pku300 in sco(te382) mutants. The genetic mutant sco(pku300), derived from sco(te382), only had the C946T mutation of pku300 and showed reduced numbers of atrial endocardial cells and an abnormal common cardinal vein. Morpholino knockdown of fbn2b led to fewer atrial endocardial cells and an abnormal caudal vein. Knockdown of both pku300 and fbn2b phenocopied these phenotypes in sco(te382) genetic mutants. pku300 transgenic expression in endocardial and endothelial cells, but not myocardial cells, partially rescued the atrial endocardial defects in sco(te382) mutants. Mechanistically, pku300 and fbn2b were required for endocardial cell proliferation, endocardial Notch signaling and the proper formation of endocardial cell adhesion and tight junctions, all of which are crucial for cardiac valve development. We conclude that pku300 and fbn2b represent the few genes capable of regulating endocardial cell proliferation and signaling in zebrafish cardiac valve development.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.116996