Inhibition of TGF-β enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy

EGF receptor (EGFR)-targeted monoclonal antibodies (mAb), such as cetuximab, execute their antitumor effect in vivo via blockade of receptor-ligand interactions and engagement of Fcγ receptors on immune effector cells that trigger antibody-dependent cell-mediated cytotoxicity (ADCC). We show that tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer therapeutics 2012-11, Vol.11 (11), p.2429-2439
Hauptverfasser: Bedi, Atul, Chang, Xiaofei, Noonan, Kimberly, Pham, Vui, Bedi, Rishi, Fertig, Elana J, Considine, Michael, Califano, Joseph A, Borrello, Ivan, Chung, Christine H, Sidransky, David, Ravi, Rajani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:EGF receptor (EGFR)-targeted monoclonal antibodies (mAb), such as cetuximab, execute their antitumor effect in vivo via blockade of receptor-ligand interactions and engagement of Fcγ receptors on immune effector cells that trigger antibody-dependent cell-mediated cytotoxicity (ADCC). We show that tumors counteract the in vivo antitumor activity of anti-EGFR mAbs by increasing tumor cell-autonomous expression of TGF-β. We show that TGF-β suppresses the expression of key molecular effectors of immune cell-mediated cytotoxicity, including Apo2L/TRAIL, CD95L/FasL, granzyme B, and IFN-γ. In addition to exerting an extrinsic inhibition of the cytotoxic function of immune effectors, TGF-β-mediated activation of AKT provides an intrinsic EGFR-independent survival signal that protects tumor cells from immune cell-mediated apoptosis. Treatment of mice-bearing xenografts of human head and neck squamous cell carcinoma with cetuximab resulted in emergence of resistant tumor cells that expressed relatively higher levels of TGF-β compared with untreated tumor-bearing mice. Although treatment with cetuximab alone forced the natural selection of TGF-β-overexpressing tumor cells in nonregressing tumors, combinatorial treatment with cetuximab and a TGF-β-blocking antibody prevented the emergence of such resistant tumor cells and induced complete tumor regression. Therefore, elevated levels of TGF-β in the tumor microenvironment enable tumor cells to evade ADCC and resist the antitumor activity of cetuximab in vivo. Our results show that TGF-β is a key molecular determinant of the de novo and acquired resistance of cancers to EGFR-targeted mAbs, and provide a rationale for combinatorial targeting of TGF-β to improve anti-EGFR-specific antibody therapy of EGFR-expressing cancers.
ISSN:1535-7163
1538-8514
DOI:10.1158/1535-7163.MCT-12-0101-T