The genetics of bipolar disorder

Abstract Bipolar disorder is a mood disorder characterized by impairing episodes of mania and depression. Twin studies have established that bipolar disorder is among the most heritable of medical disorders and efforts to identify specific susceptibility genes have intensified over the past two deca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2009-11, Vol.164 (1), p.331-343
Hauptverfasser: Barnett, J.H, Smoller, J.W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Bipolar disorder is a mood disorder characterized by impairing episodes of mania and depression. Twin studies have established that bipolar disorder is among the most heritable of medical disorders and efforts to identify specific susceptibility genes have intensified over the past two decades. The search for genes influencing bipolar disorder has been complicated by a paucity of animal models, limited understanding of pathogenesis, and the genetic and phenotypic complexity of the syndrome. Linkage studies have implicated several chromosomal regions as harboring relevant genes, but results have been inconsistent. It is now widely accepted that the genetic liability to bipolar disorder reflects the action of many genes of individually small effect, a scenario for which linkage studies are poorly suited. Thus, association studies, which are more powerful for the detection of modest effect loci, have become the focus of gene-finding research. A large number of candidate genes, including biological candidates derived from hypotheses about the pathogenesis of the disorder and positional candidates derived from linkage and cytogenetic studies, have been evaluated. Several of these genes have been associated with the disorder in independent studies (including BDNF , DAOA , DISC1 , GRIK4 , SLC6A4 , and TPH2 ), but none has been established. The clinical heterogeneity of bipolar disorder and its phenotypic and genetic overlap with other disorders (especially schizophrenia, schizoaffective disorder, and major depressive disorder) have raised questions about the optimal phenotype definition for genetic studies. Nevertheless, genomewide association analysis, which has successfully identified susceptibility genes for a variety of complex disorders, has begun to implicate specific genes for bipolar disorder (DGKH, CACNA1C, ANK3). The polygenicity of the disorder means that very large samples will be needed to detect the modest effect loci that likely contribute to bipolar disorder. Detailed genetic dissection of the disorder may provide novel targets (both pharmacologic and psychosocial) for intervention.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2009.03.080