Rapid Approaches Towards DNA Damage Analysis

The severe effects of DNA damage on human health have led to a tremendous amount of research being focused. Owing to the importance of damage detection, different approaches for the detection and quantification of the damaged DNA will be presented. In this work, we have modeled DNA damage using well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomolecular techniques 2013-05, Vol.24 (Suppl), p.S58-S58
Hauptverfasser: Crews, N., Paidipalli, Manasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The severe effects of DNA damage on human health have led to a tremendous amount of research being focused. Owing to the importance of damage detection, different approaches for the detection and quantification of the damaged DNA will be presented. In this work, we have modeled DNA damage using well-known mutagens: UV radiation to create photoproducts and restriction enzyme digestion to create double strand breaks. We will show that quantitative PCR (qPCR), a widely known measure of detecting the presence of the target DNA can be used to quantify photoproducts/intramolecular DNA damage. Our results indicate that a comparison of the initial concentration available in the undamaged and the damaged samples can be used to reveal the effect of damaged DNA in its amplification. By analyzing multiple regions using this technique, their relative susceptibility to damage can be measured. We also show that high-resolution melting analysis (HRMA), a measure of the bond energy between two DNA strands, can be used to quantify double strand breaks. The strand breaks resulted in a change in the overall distribution of the bond energy thus causing variations in the melting profile. HRMA has also been examined to compare DNA damage resulting from UV-A, UV-B and UV-C irradiation. The evaluation techniques demonstrated can potentially be extended to various types of DNA damage.
ISSN:1524-0215
1943-4731