Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system
STUDY QUESTION What are the appropriate conditions to vitrify the macaque ovarian cortex in a large-volume, closed system that will preserve functional pre-antral follicles? SUMMARY ANSWER The combination of glycerol, ethylene glycol (EG) and polymers with cooling in liquid nitrogen (LN2) vapor and...
Gespeichert in:
Veröffentlicht in: | Human reproduction (Oxford) 2013-05, Vol.28 (5), p.1267-1279 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | STUDY QUESTION
What are the appropriate conditions to vitrify the macaque ovarian cortex in a large-volume, closed system that will preserve functional pre-antral follicles?
SUMMARY ANSWER
The combination of glycerol, ethylene glycol (EG) and polymers with cooling in liquid nitrogen (LN2) vapor and a two-step warming procedure was able to preserve tissue and follicle morphology as well as function of a small population of secondary follicles in the macaque ovarian cortex following vitrification in a closed system.
WHAT IS KNOWN ALREADY
For prepubertal cancer patients or those who require immediate cancer therapy, ovarian tissue cryopreservation offers the only hope for future fertility. However, the efficacy of live birth from the transplantation of cryopreserved ovarian tissue is still unclear. In addition, live birth from cryopreserved ovarian tissue has only been demonstrated after tissue autotransplantation, which poses the risk of transmitting metastatic cancer cells back to the cancer survivor in certain cancers.
STUDY DESIGN, SIZE, DURATION
Non-human primate model, n = 4, randomized, control versus treatment. End-points were collected from tissue histology, tissue culture (48 h) and isolated secondary follicle culture (6 weeks).
PARTICIPANTS/MATERIALS, SETTING, METHODS
Two vitrification solutions (VSs) containing EG + glycerol (VEG) and EG + dimethylsulfoxide (VED) were examined for vitrification, devitrification and thermodynamic properties. Once the optimal VS was determined, macaque ovarian cortical pieces (3 × 3 × 0.5 mm3) were divided into fresh and two vitrified groups (VEG and VED). For the vitrification groups, tissues were exposed to 1/4, 1/2 and 1× VS for 5 min/step as well as 1× VS + polymers for 1 min at 37°C, loaded into high-security straws with 1 ml of VS + polymers, heat sealed and cooled in LN2 vapor. Samples were warmed in a 40°C water bath and cryoprotective agents were diluted with 1, 0.5, 0.25 and 0 M sucrose. Tissues were fixed for histological analysis and cultured with bromodeoxyuridine (BrdU). Secondary follicles from VEG tissues were encapsulated and cultured (n = 24/treatment/animal). Follicle health, diameter and steroid [progesterone, androstenedione (A4), estradiol (E2)] production were analyzed weekly.
MAIN RESULTS AND THE ROLE OF CHANCE
Dense stroma and intact pre-antral follicles were observed using VS containing 27% glycerol, 27% EG and 0.8% polymers with cooling in LN2 vapor and a two-step warming. Higher cooling a |
---|---|
ISSN: | 0268-1161 1460-2350 |
DOI: | 10.1093/humrep/det032 |