Microscopic magnetic stimulation of neural tissue

Electrical stimulation is currently used to treat a wide range of cardiovascular, sensory and neurological diseases. Despite its success, there are significant limitations to its application, including incompatibility with magnetic resonance imaging, limited control of electric fields and decreased...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2012-06, Vol.3 (1), p.921-921, Article 921
Hauptverfasser: Bonmassar, Giorgio, Lee, Seung Woo, Freeman, Daniel K., Polasek, Miloslav, Fried, Shelley I., Gale, John T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrical stimulation is currently used to treat a wide range of cardiovascular, sensory and neurological diseases. Despite its success, there are significant limitations to its application, including incompatibility with magnetic resonance imaging, limited control of electric fields and decreased performance associated with tissue inflammation. Magnetic stimulation overcomes these limitations but existing devices (that is, transcranial magnetic stimulation) are large, reducing their translation to chronic applications. In addition, existing devices are not effective for deeper, sub-cortical targets. Here we demonstrate that sub-millimeter coils can activate neuronal tissue. Interestingly, the results of both modelling and physiological experiments suggest that different spatial orientations of the coils relative to the neuronal tissue can be used to generate specific neural responses. These results raise the possibility that micro-magnetic stimulation coils, small enough to be implanted within the brain parenchyma, may prove to be an effective alternative to existing stimulation devices. Electrical stimulation is used to treat a range of neurological diseases, but there are limitations that reduce its benefits. Bonmassar and colleagues show that magnetic stimulation delivered by small coils, close to the targeted neural tissue, can also be used to activate neurons and with fewer limitations.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms1914