Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts

Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in huma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pathology 2013-04, Vol.229 (5), p.755-764
Hauptverfasser: Morten, Karl J, Badder, Luned, Knowles, Helen J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 764
container_issue 5
container_start_page 755
container_title The Journal of pathology
container_volume 229
creator Morten, Karl J
Badder, Luned
Knowles, Helen J
description Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in human osteoclasts differentiated from CD14+ monocytes, hypoxia (24 h, 2% O2): (a) increases ATP production and mitochondrial electron transport chain activity (Alamar blue, O2 consumption); (b) increases glycolytic flux (glucose consumption, lactate production); and (c) increases glutamine consumption. We demonstrate that glucose, rather than glutamine, is necessary for the hypoxic increase in ATP production and also for cell survival in hypoxia. Using siRNA targeting specific isoforms of the hypoxia‐inducible transcription factor HIF (HIF‐1α, HIF‐2α), we show that employment of selected components of the HIF‐1α‐mediated metabolic switch to anaerobic respiration enables osteoclasts to rapidly increase ATP production in hypoxia, while at the same time compromising long‐term survival. We propose this atypical HIF‐driven metabolic pathway to be an adaptive mechanism to permit rapid bone resorption in the short term while ensuring curtailment of the process in the absence of re‐oxygenation. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
doi_str_mv 10.1002/path.4159
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3618370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1317837502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5809-af0b6611e21f60d2bfef34b398e55ba7f1441cfbf5dedfe302901069e01187483</originalsourceid><addsrcrecordid>eNqFkcFu1DAURS0EokNhwQ8gS2xgkfY5jpN4gzQqtFNUQQWDWFpO8txxSeKpndDOgn_H6QwjQEKsvHjnHfv6EvKcwREDSI_XelgdZUzIB2TGQOaJLGX-kMziLE14xooD8iSEawCQUojH5CDlHLgQckZ-vLXGoMd-sLqlHq_GVg_W9dQZujg_TTpsrB6wodMdt3oTqO1rjzpgoJ0dXL1yfeOn3Q4HXbnWho7qvqHz5SVde9eM9b3O9nS1Wbs7W1MXBnR1q8MQnpJHRrcBn-3OQ_Ll9N3yZJFcfDw7P5lfJLUoQSbaQJXnjGHKTA5NWhk0PKu4LFGISheGZRmrTWVEg41BDqkEBrlEYKwsspIfkjdb73qsYqI6xvW6VWtvO-03ymmr_pz0dqWu3HfFc1byAqLg1U7g3c2IYVCdDTW2re7RjUGxTJQigyIV_0c5K6JTQBrRl3-h1270ffyJeypnsTsZqddbqvYuBI9m_24GaupfTd2oqf_Ivvg96J78VXgEjrfArW1x82-TupwvFztlst2wsbe7_Yb231RexBzq64czVaSf5acSMvWe_wQ6vMwF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317613419</pqid></control><display><type>article</type><title>Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Morten, Karl J ; Badder, Luned ; Knowles, Helen J</creator><creatorcontrib>Morten, Karl J ; Badder, Luned ; Knowles, Helen J</creatorcontrib><description>Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in human osteoclasts differentiated from CD14+ monocytes, hypoxia (24 h, 2% O2): (a) increases ATP production and mitochondrial electron transport chain activity (Alamar blue, O2 consumption); (b) increases glycolytic flux (glucose consumption, lactate production); and (c) increases glutamine consumption. We demonstrate that glucose, rather than glutamine, is necessary for the hypoxic increase in ATP production and also for cell survival in hypoxia. Using siRNA targeting specific isoforms of the hypoxia‐inducible transcription factor HIF (HIF‐1α, HIF‐2α), we show that employment of selected components of the HIF‐1α‐mediated metabolic switch to anaerobic respiration enables osteoclasts to rapidly increase ATP production in hypoxia, while at the same time compromising long‐term survival. We propose this atypical HIF‐driven metabolic pathway to be an adaptive mechanism to permit rapid bone resorption in the short term while ensuring curtailment of the process in the absence of re‐oxygenation. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.4159</identifier><identifier>PMID: 23303559</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adaptation, Physiological ; Adenosine Triphosphate - metabolism ; ATP ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Bone Resorption - genetics ; Bone Resorption - metabolism ; Bone Resorption - pathology ; Bone Resorption - physiopathology ; Cell Hypoxia ; Cell Survival ; Cells, Cultured ; Electron Transport Chain Complex Proteins - metabolism ; Energy Metabolism ; Glucose - metabolism ; Glutamine - metabolism ; Glycolysis ; Humans ; hypoxia ; hypoxia-inducible factor ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Lactic Acid - metabolism ; metabolism ; Mitochondria - metabolism ; Original Papers ; osteoclast ; Osteoclasts - metabolism ; Osteoclasts - pathology ; Oxygen Consumption ; Pyruvate Dehydrogenase Complex - metabolism ; RNA Interference ; Time Factors ; Transfection ; Up-Regulation</subject><ispartof>The Journal of pathology, 2013-04, Vol.229 (5), p.755-764</ispartof><rights>Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5809-af0b6611e21f60d2bfef34b398e55ba7f1441cfbf5dedfe302901069e01187483</citedby><cites>FETCH-LOGICAL-c5809-af0b6611e21f60d2bfef34b398e55ba7f1441cfbf5dedfe302901069e01187483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpath.4159$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpath.4159$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23303559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morten, Karl J</creatorcontrib><creatorcontrib>Badder, Luned</creatorcontrib><creatorcontrib>Knowles, Helen J</creatorcontrib><title>Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts</title><title>The Journal of pathology</title><addtitle>J. Pathol</addtitle><description>Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in human osteoclasts differentiated from CD14+ monocytes, hypoxia (24 h, 2% O2): (a) increases ATP production and mitochondrial electron transport chain activity (Alamar blue, O2 consumption); (b) increases glycolytic flux (glucose consumption, lactate production); and (c) increases glutamine consumption. We demonstrate that glucose, rather than glutamine, is necessary for the hypoxic increase in ATP production and also for cell survival in hypoxia. Using siRNA targeting specific isoforms of the hypoxia‐inducible transcription factor HIF (HIF‐1α, HIF‐2α), we show that employment of selected components of the HIF‐1α‐mediated metabolic switch to anaerobic respiration enables osteoclasts to rapidly increase ATP production in hypoxia, while at the same time compromising long‐term survival. We propose this atypical HIF‐driven metabolic pathway to be an adaptive mechanism to permit rapid bone resorption in the short term while ensuring curtailment of the process in the absence of re‐oxygenation. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><subject>Adaptation, Physiological</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Bone Resorption - genetics</subject><subject>Bone Resorption - metabolism</subject><subject>Bone Resorption - pathology</subject><subject>Bone Resorption - physiopathology</subject><subject>Cell Hypoxia</subject><subject>Cell Survival</subject><subject>Cells, Cultured</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Energy Metabolism</subject><subject>Glucose - metabolism</subject><subject>Glutamine - metabolism</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>hypoxia</subject><subject>hypoxia-inducible factor</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Lactic Acid - metabolism</subject><subject>metabolism</subject><subject>Mitochondria - metabolism</subject><subject>Original Papers</subject><subject>osteoclast</subject><subject>Osteoclasts - metabolism</subject><subject>Osteoclasts - pathology</subject><subject>Oxygen Consumption</subject><subject>Pyruvate Dehydrogenase Complex - metabolism</subject><subject>RNA Interference</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Up-Regulation</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAURS0EokNhwQ8gS2xgkfY5jpN4gzQqtFNUQQWDWFpO8txxSeKpndDOgn_H6QwjQEKsvHjnHfv6EvKcwREDSI_XelgdZUzIB2TGQOaJLGX-kMziLE14xooD8iSEawCQUojH5CDlHLgQckZ-vLXGoMd-sLqlHq_GVg_W9dQZujg_TTpsrB6wodMdt3oTqO1rjzpgoJ0dXL1yfeOn3Q4HXbnWho7qvqHz5SVde9eM9b3O9nS1Wbs7W1MXBnR1q8MQnpJHRrcBn-3OQ_Ll9N3yZJFcfDw7P5lfJLUoQSbaQJXnjGHKTA5NWhk0PKu4LFGISheGZRmrTWVEg41BDqkEBrlEYKwsspIfkjdb73qsYqI6xvW6VWtvO-03ymmr_pz0dqWu3HfFc1byAqLg1U7g3c2IYVCdDTW2re7RjUGxTJQigyIV_0c5K6JTQBrRl3-h1270ffyJeypnsTsZqddbqvYuBI9m_24GaupfTd2oqf_Ivvg96J78VXgEjrfArW1x82-TupwvFztlst2wsbe7_Yb231RexBzq64czVaSf5acSMvWe_wQ6vMwF</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Morten, Karl J</creator><creator>Badder, Luned</creator><creator>Knowles, Helen J</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201304</creationdate><title>Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts</title><author>Morten, Karl J ; Badder, Luned ; Knowles, Helen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5809-af0b6611e21f60d2bfef34b398e55ba7f1441cfbf5dedfe302901069e01187483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Physiological</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Bone Resorption - genetics</topic><topic>Bone Resorption - metabolism</topic><topic>Bone Resorption - pathology</topic><topic>Bone Resorption - physiopathology</topic><topic>Cell Hypoxia</topic><topic>Cell Survival</topic><topic>Cells, Cultured</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Energy Metabolism</topic><topic>Glucose - metabolism</topic><topic>Glutamine - metabolism</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>hypoxia</topic><topic>hypoxia-inducible factor</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Lactic Acid - metabolism</topic><topic>metabolism</topic><topic>Mitochondria - metabolism</topic><topic>Original Papers</topic><topic>osteoclast</topic><topic>Osteoclasts - metabolism</topic><topic>Osteoclasts - pathology</topic><topic>Oxygen Consumption</topic><topic>Pyruvate Dehydrogenase Complex - metabolism</topic><topic>RNA Interference</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morten, Karl J</creatorcontrib><creatorcontrib>Badder, Luned</creatorcontrib><creatorcontrib>Knowles, Helen J</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morten, Karl J</au><au>Badder, Luned</au><au>Knowles, Helen J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J. Pathol</addtitle><date>2013-04</date><risdate>2013</risdate><volume>229</volume><issue>5</issue><spage>755</spage><epage>764</epage><pages>755-764</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><abstract>Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in human osteoclasts differentiated from CD14+ monocytes, hypoxia (24 h, 2% O2): (a) increases ATP production and mitochondrial electron transport chain activity (Alamar blue, O2 consumption); (b) increases glycolytic flux (glucose consumption, lactate production); and (c) increases glutamine consumption. We demonstrate that glucose, rather than glutamine, is necessary for the hypoxic increase in ATP production and also for cell survival in hypoxia. Using siRNA targeting specific isoforms of the hypoxia‐inducible transcription factor HIF (HIF‐1α, HIF‐2α), we show that employment of selected components of the HIF‐1α‐mediated metabolic switch to anaerobic respiration enables osteoclasts to rapidly increase ATP production in hypoxia, while at the same time compromising long‐term survival. We propose this atypical HIF‐driven metabolic pathway to be an adaptive mechanism to permit rapid bone resorption in the short term while ensuring curtailment of the process in the absence of re‐oxygenation. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>23303559</pmid><doi>10.1002/path.4159</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3417
ispartof The Journal of pathology, 2013-04, Vol.229 (5), p.755-764
issn 0022-3417
1096-9896
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3618370
source MEDLINE; Wiley Journals
subjects Adaptation, Physiological
Adenosine Triphosphate - metabolism
ATP
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Bone Resorption - genetics
Bone Resorption - metabolism
Bone Resorption - pathology
Bone Resorption - physiopathology
Cell Hypoxia
Cell Survival
Cells, Cultured
Electron Transport Chain Complex Proteins - metabolism
Energy Metabolism
Glucose - metabolism
Glutamine - metabolism
Glycolysis
Humans
hypoxia
hypoxia-inducible factor
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Lactic Acid - metabolism
metabolism
Mitochondria - metabolism
Original Papers
osteoclast
Osteoclasts - metabolism
Osteoclasts - pathology
Oxygen Consumption
Pyruvate Dehydrogenase Complex - metabolism
RNA Interference
Time Factors
Transfection
Up-Regulation
title Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20regulation%20of%20HIF-mediated%20pathways%20increases%20mitochondrial%20metabolism%20and%20ATP%20production%20in%20hypoxic%20osteoclasts&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Morten,%20Karl%20J&rft.date=2013-04&rft.volume=229&rft.issue=5&rft.spage=755&rft.epage=764&rft.pages=755-764&rft.issn=0022-3417&rft.eissn=1096-9896&rft_id=info:doi/10.1002/path.4159&rft_dat=%3Cproquest_pubme%3E1317837502%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317613419&rft_id=info:pmid/23303559&rfr_iscdi=true