Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts
Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in huma...
Gespeichert in:
Veröffentlicht in: | The Journal of pathology 2013-04, Vol.229 (5), p.755-764 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 764 |
---|---|
container_issue | 5 |
container_start_page | 755 |
container_title | The Journal of pathology |
container_volume | 229 |
creator | Morten, Karl J Badder, Luned Knowles, Helen J |
description | Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in human osteoclasts differentiated from CD14+ monocytes, hypoxia (24 h, 2% O2): (a) increases ATP production and mitochondrial electron transport chain activity (Alamar blue, O2 consumption); (b) increases glycolytic flux (glucose consumption, lactate production); and (c) increases glutamine consumption. We demonstrate that glucose, rather than glutamine, is necessary for the hypoxic increase in ATP production and also for cell survival in hypoxia. Using siRNA targeting specific isoforms of the hypoxia‐inducible transcription factor HIF (HIF‐1α, HIF‐2α), we show that employment of selected components of the HIF‐1α‐mediated metabolic switch to anaerobic respiration enables osteoclasts to rapidly increase ATP production in hypoxia, while at the same time compromising long‐term survival. We propose this atypical HIF‐driven metabolic pathway to be an adaptive mechanism to permit rapid bone resorption in the short term while ensuring curtailment of the process in the absence of re‐oxygenation. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/path.4159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3618370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1317837502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5809-af0b6611e21f60d2bfef34b398e55ba7f1441cfbf5dedfe302901069e01187483</originalsourceid><addsrcrecordid>eNqFkcFu1DAURS0EokNhwQ8gS2xgkfY5jpN4gzQqtFNUQQWDWFpO8txxSeKpndDOgn_H6QwjQEKsvHjnHfv6EvKcwREDSI_XelgdZUzIB2TGQOaJLGX-kMziLE14xooD8iSEawCQUojH5CDlHLgQckZ-vLXGoMd-sLqlHq_GVg_W9dQZujg_TTpsrB6wodMdt3oTqO1rjzpgoJ0dXL1yfeOn3Q4HXbnWho7qvqHz5SVde9eM9b3O9nS1Wbs7W1MXBnR1q8MQnpJHRrcBn-3OQ_Ll9N3yZJFcfDw7P5lfJLUoQSbaQJXnjGHKTA5NWhk0PKu4LFGISheGZRmrTWVEg41BDqkEBrlEYKwsspIfkjdb73qsYqI6xvW6VWtvO-03ymmr_pz0dqWu3HfFc1byAqLg1U7g3c2IYVCdDTW2re7RjUGxTJQigyIV_0c5K6JTQBrRl3-h1270ffyJeypnsTsZqddbqvYuBI9m_24GaupfTd2oqf_Ivvg96J78VXgEjrfArW1x82-TupwvFztlst2wsbe7_Yb231RexBzq64czVaSf5acSMvWe_wQ6vMwF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317613419</pqid></control><display><type>article</type><title>Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Morten, Karl J ; Badder, Luned ; Knowles, Helen J</creator><creatorcontrib>Morten, Karl J ; Badder, Luned ; Knowles, Helen J</creatorcontrib><description>Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in human osteoclasts differentiated from CD14+ monocytes, hypoxia (24 h, 2% O2): (a) increases ATP production and mitochondrial electron transport chain activity (Alamar blue, O2 consumption); (b) increases glycolytic flux (glucose consumption, lactate production); and (c) increases glutamine consumption. We demonstrate that glucose, rather than glutamine, is necessary for the hypoxic increase in ATP production and also for cell survival in hypoxia. Using siRNA targeting specific isoforms of the hypoxia‐inducible transcription factor HIF (HIF‐1α, HIF‐2α), we show that employment of selected components of the HIF‐1α‐mediated metabolic switch to anaerobic respiration enables osteoclasts to rapidly increase ATP production in hypoxia, while at the same time compromising long‐term survival. We propose this atypical HIF‐driven metabolic pathway to be an adaptive mechanism to permit rapid bone resorption in the short term while ensuring curtailment of the process in the absence of re‐oxygenation. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.4159</identifier><identifier>PMID: 23303559</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Adaptation, Physiological ; Adenosine Triphosphate - metabolism ; ATP ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Bone Resorption - genetics ; Bone Resorption - metabolism ; Bone Resorption - pathology ; Bone Resorption - physiopathology ; Cell Hypoxia ; Cell Survival ; Cells, Cultured ; Electron Transport Chain Complex Proteins - metabolism ; Energy Metabolism ; Glucose - metabolism ; Glutamine - metabolism ; Glycolysis ; Humans ; hypoxia ; hypoxia-inducible factor ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Lactic Acid - metabolism ; metabolism ; Mitochondria - metabolism ; Original Papers ; osteoclast ; Osteoclasts - metabolism ; Osteoclasts - pathology ; Oxygen Consumption ; Pyruvate Dehydrogenase Complex - metabolism ; RNA Interference ; Time Factors ; Transfection ; Up-Regulation</subject><ispartof>The Journal of pathology, 2013-04, Vol.229 (5), p.755-764</ispartof><rights>Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</rights><rights>Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5809-af0b6611e21f60d2bfef34b398e55ba7f1441cfbf5dedfe302901069e01187483</citedby><cites>FETCH-LOGICAL-c5809-af0b6611e21f60d2bfef34b398e55ba7f1441cfbf5dedfe302901069e01187483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpath.4159$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpath.4159$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23303559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morten, Karl J</creatorcontrib><creatorcontrib>Badder, Luned</creatorcontrib><creatorcontrib>Knowles, Helen J</creatorcontrib><title>Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts</title><title>The Journal of pathology</title><addtitle>J. Pathol</addtitle><description>Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in human osteoclasts differentiated from CD14+ monocytes, hypoxia (24 h, 2% O2): (a) increases ATP production and mitochondrial electron transport chain activity (Alamar blue, O2 consumption); (b) increases glycolytic flux (glucose consumption, lactate production); and (c) increases glutamine consumption. We demonstrate that glucose, rather than glutamine, is necessary for the hypoxic increase in ATP production and also for cell survival in hypoxia. Using siRNA targeting specific isoforms of the hypoxia‐inducible transcription factor HIF (HIF‐1α, HIF‐2α), we show that employment of selected components of the HIF‐1α‐mediated metabolic switch to anaerobic respiration enables osteoclasts to rapidly increase ATP production in hypoxia, while at the same time compromising long‐term survival. We propose this atypical HIF‐driven metabolic pathway to be an adaptive mechanism to permit rapid bone resorption in the short term while ensuring curtailment of the process in the absence of re‐oxygenation. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><subject>Adaptation, Physiological</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Bone Resorption - genetics</subject><subject>Bone Resorption - metabolism</subject><subject>Bone Resorption - pathology</subject><subject>Bone Resorption - physiopathology</subject><subject>Cell Hypoxia</subject><subject>Cell Survival</subject><subject>Cells, Cultured</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Energy Metabolism</subject><subject>Glucose - metabolism</subject><subject>Glutamine - metabolism</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>hypoxia</subject><subject>hypoxia-inducible factor</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Lactic Acid - metabolism</subject><subject>metabolism</subject><subject>Mitochondria - metabolism</subject><subject>Original Papers</subject><subject>osteoclast</subject><subject>Osteoclasts - metabolism</subject><subject>Osteoclasts - pathology</subject><subject>Oxygen Consumption</subject><subject>Pyruvate Dehydrogenase Complex - metabolism</subject><subject>RNA Interference</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Up-Regulation</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAURS0EokNhwQ8gS2xgkfY5jpN4gzQqtFNUQQWDWFpO8txxSeKpndDOgn_H6QwjQEKsvHjnHfv6EvKcwREDSI_XelgdZUzIB2TGQOaJLGX-kMziLE14xooD8iSEawCQUojH5CDlHLgQckZ-vLXGoMd-sLqlHq_GVg_W9dQZujg_TTpsrB6wodMdt3oTqO1rjzpgoJ0dXL1yfeOn3Q4HXbnWho7qvqHz5SVde9eM9b3O9nS1Wbs7W1MXBnR1q8MQnpJHRrcBn-3OQ_Ll9N3yZJFcfDw7P5lfJLUoQSbaQJXnjGHKTA5NWhk0PKu4LFGISheGZRmrTWVEg41BDqkEBrlEYKwsspIfkjdb73qsYqI6xvW6VWtvO-03ymmr_pz0dqWu3HfFc1byAqLg1U7g3c2IYVCdDTW2re7RjUGxTJQigyIV_0c5K6JTQBrRl3-h1270ffyJeypnsTsZqddbqvYuBI9m_24GaupfTd2oqf_Ivvg96J78VXgEjrfArW1x82-TupwvFztlst2wsbe7_Yb231RexBzq64czVaSf5acSMvWe_wQ6vMwF</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Morten, Karl J</creator><creator>Badder, Luned</creator><creator>Knowles, Helen J</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201304</creationdate><title>Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts</title><author>Morten, Karl J ; Badder, Luned ; Knowles, Helen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5809-af0b6611e21f60d2bfef34b398e55ba7f1441cfbf5dedfe302901069e01187483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Physiological</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Bone Resorption - genetics</topic><topic>Bone Resorption - metabolism</topic><topic>Bone Resorption - pathology</topic><topic>Bone Resorption - physiopathology</topic><topic>Cell Hypoxia</topic><topic>Cell Survival</topic><topic>Cells, Cultured</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Energy Metabolism</topic><topic>Glucose - metabolism</topic><topic>Glutamine - metabolism</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>hypoxia</topic><topic>hypoxia-inducible factor</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Lactic Acid - metabolism</topic><topic>metabolism</topic><topic>Mitochondria - metabolism</topic><topic>Original Papers</topic><topic>osteoclast</topic><topic>Osteoclasts - metabolism</topic><topic>Osteoclasts - pathology</topic><topic>Oxygen Consumption</topic><topic>Pyruvate Dehydrogenase Complex - metabolism</topic><topic>RNA Interference</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morten, Karl J</creatorcontrib><creatorcontrib>Badder, Luned</creatorcontrib><creatorcontrib>Knowles, Helen J</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morten, Karl J</au><au>Badder, Luned</au><au>Knowles, Helen J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J. Pathol</addtitle><date>2013-04</date><risdate>2013</risdate><volume>229</volume><issue>5</issue><spage>755</spage><epage>764</epage><pages>755-764</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><abstract>Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in human osteoclasts differentiated from CD14+ monocytes, hypoxia (24 h, 2% O2): (a) increases ATP production and mitochondrial electron transport chain activity (Alamar blue, O2 consumption); (b) increases glycolytic flux (glucose consumption, lactate production); and (c) increases glutamine consumption. We demonstrate that glucose, rather than glutamine, is necessary for the hypoxic increase in ATP production and also for cell survival in hypoxia. Using siRNA targeting specific isoforms of the hypoxia‐inducible transcription factor HIF (HIF‐1α, HIF‐2α), we show that employment of selected components of the HIF‐1α‐mediated metabolic switch to anaerobic respiration enables osteoclasts to rapidly increase ATP production in hypoxia, while at the same time compromising long‐term survival. We propose this atypical HIF‐driven metabolic pathway to be an adaptive mechanism to permit rapid bone resorption in the short term while ensuring curtailment of the process in the absence of re‐oxygenation. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>23303559</pmid><doi>10.1002/path.4159</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3417 |
ispartof | The Journal of pathology, 2013-04, Vol.229 (5), p.755-764 |
issn | 0022-3417 1096-9896 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3618370 |
source | MEDLINE; Wiley Journals |
subjects | Adaptation, Physiological Adenosine Triphosphate - metabolism ATP Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Bone Resorption - genetics Bone Resorption - metabolism Bone Resorption - pathology Bone Resorption - physiopathology Cell Hypoxia Cell Survival Cells, Cultured Electron Transport Chain Complex Proteins - metabolism Energy Metabolism Glucose - metabolism Glutamine - metabolism Glycolysis Humans hypoxia hypoxia-inducible factor Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Lactic Acid - metabolism metabolism Mitochondria - metabolism Original Papers osteoclast Osteoclasts - metabolism Osteoclasts - pathology Oxygen Consumption Pyruvate Dehydrogenase Complex - metabolism RNA Interference Time Factors Transfection Up-Regulation |
title | Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20regulation%20of%20HIF-mediated%20pathways%20increases%20mitochondrial%20metabolism%20and%20ATP%20production%20in%20hypoxic%20osteoclasts&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Morten,%20Karl%20J&rft.date=2013-04&rft.volume=229&rft.issue=5&rft.spage=755&rft.epage=764&rft.pages=755-764&rft.issn=0022-3417&rft.eissn=1096-9896&rft_id=info:doi/10.1002/path.4159&rft_dat=%3Cproquest_pubme%3E1317837502%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317613419&rft_id=info:pmid/23303559&rfr_iscdi=true |