Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts

Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in huma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pathology 2013-04, Vol.229 (5), p.755-764
Hauptverfasser: Morten, Karl J, Badder, Luned, Knowles, Helen J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inappropriate osteoclast activity instigates pathological bone loss in rheumatoid arthritis. We have investigated how osteoclasts generate sufficient ATP for the energy‐intensive process of bone resorption in the hypoxic microenvironment associated with this rheumatic condition. We show that in human osteoclasts differentiated from CD14+ monocytes, hypoxia (24 h, 2% O2): (a) increases ATP production and mitochondrial electron transport chain activity (Alamar blue, O2 consumption); (b) increases glycolytic flux (glucose consumption, lactate production); and (c) increases glutamine consumption. We demonstrate that glucose, rather than glutamine, is necessary for the hypoxic increase in ATP production and also for cell survival in hypoxia. Using siRNA targeting specific isoforms of the hypoxia‐inducible transcription factor HIF (HIF‐1α, HIF‐2α), we show that employment of selected components of the HIF‐1α‐mediated metabolic switch to anaerobic respiration enables osteoclasts to rapidly increase ATP production in hypoxia, while at the same time compromising long‐term survival. We propose this atypical HIF‐driven metabolic pathway to be an adaptive mechanism to permit rapid bone resorption in the short term while ensuring curtailment of the process in the absence of re‐oxygenation. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
ISSN:0022-3417
1096-9896
DOI:10.1002/path.4159