An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data

This paper develops a new empirical likelihood method for semiparametric linear regression with a completely unknown error distribution and right censored survival data. The method is based on the Buckley-James (1979) estimating equation. It inherits some appealing properties of the complete data em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2013-01, Vol.2013 (2013), p.1-9
Hauptverfasser: Fang, Kai-Tai, Li, Gang, Lu, Xuyang, Qin, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a new empirical likelihood method for semiparametric linear regression with a completely unknown error distribution and right censored survival data. The method is based on the Buckley-James (1979) estimating equation. It inherits some appealing properties of the complete data empirical likelihood method. For example, it does not require variance estimation which is problematic for the Buckley-James estimator. We also extend our method to incorporate auxiliary information. We compare our method with the synthetic data empirical likelihood of Li and Wang (2003) using simulations. We also illustrate our method using Stanford heart transplantation data.
ISSN:1748-670X
1748-6718
DOI:10.1155/2013/469373