Novel and Distinct Metabolites Identified Following a Single Oral Dose of α- or γ‑Hexabromocyclododecane in Mice

The metabolism of α- and γ-hexabromocyclododecane (HBCD) was investigated in adult C57BL/6 female mice. α- or γ-[14C]HBCD (3 mg/kg bw) was orally administered with subsequent urine and feces collection for 4 consecutive days; a separate group of mice was dosed and sacrificed 3 h postexposure to inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2012-12, Vol.46 (24), p.13494-13503
Hauptverfasser: Hakk, Heldur, Szabo, David T, Huwe, Janice, Diliberto, Janet, Birnbaum, Linda S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The metabolism of α- and γ-hexabromocyclododecane (HBCD) was investigated in adult C57BL/6 female mice. α- or γ-[14C]HBCD (3 mg/kg bw) was orally administered with subsequent urine and feces collection for 4 consecutive days; a separate group of mice was dosed and sacrificed 3 h postexposure to investigate tissue metabolite levels. Extractable and nonextractable HBCD metabolites were quantitated in liver, blood, fat, brain, bile, urine, and feces and characterized by LC/MS (ESI−). Metabolites identified were distinct between the two stereoisomers. In mice exposed to α-HBCD, four hydroxylated metabolites were detected in fecal extracts, and one of these metabolite isomers was consistently characterized in liver, brain, and adipose tissue extracts. In contrast, fecal extracts from mice exposed to γ-HBCD contained multiple isomers of monohydroxy-pentabromocyclododecene, dihydroxy-pentabromocyclododecene, and dihydroxy-pentabromocyclododecadiene, while in liver and adipose tissues extracts only a single monohydroxy-pentabromocyclododecane metabolite was observed. Both stereoisomers were transformed to metabolites which formed covalent bonds to proteins and/or lipids in the gut as suggested by high fecal nonextractables. The presence of tissue- and excreta-specific metabolic products after in vivo exposure to the two main HBCD stereoisomers supports previous toxicokinetic studies indicating that these two stereoisomers are biologically distinct. The distinct metabolic products identified in this study have the potential to aid in the identification of stereoisomer-specific HBCD exposures in future biomonitoring studies.
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/es303209g