Mutant Twinkle increases dopaminergic neurodegeneration, mtDNA deletions and modulates Parkin expression

Parkinson's disease (PD) is the second most common neurodegenerative disorder in the developed world, and is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Somatic mitochondrial DNA (mtDNA) deletions reach their highest concentration with age in the SN in h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2012-12, Vol.21 (23), p.5147-5158
Hauptverfasser: LANYING SONG, YUXI SHAN, KENT LLOYD, K. C, CORTOPASSI, Gino A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parkinson's disease (PD) is the second most common neurodegenerative disorder in the developed world, and is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Somatic mitochondrial DNA (mtDNA) deletions reach their highest concentration with age in the SN in humans, and may contribute to PD; yet whether mtDNA deletions cause DA neuron degeneration remains unclear. Inherited mutations of Twinkle helicase involved in mtDNA replication causes a dominant increase in mtDNA deletions in humans. We constructed a mouse model expressing mutant Twinkle in DA neurons. Mutant mice had an increase in age-related mtDNA deletions, reduction of DA neuron number in SN at 17-22 months and displayed abnormalities in rota-rod behavior. Functional analysis of midbrain indicated a slight reduction in mitochondrial state II respiration in mutants, but no decrease in maximal respiration. Also, Parkin expression was significantly decreased in DA neurons in the SN of 22-month-old mutant mice, and in PC12 cells after 48 h transfection of mutant Twinkle. Both confocal imaging and coimmunoprecipitation indicated interaction of Twinkle with Parkin in the mitochondria. Parkin overexpression rescued the reduction of proteasome activity caused by mutant Twinkle in PC12 cells. In addition, the autophagy marker LC3 was increased in the SN of 22-month transgenics, and this increase was similarly mutant Twinkle-dependent in PC12 cells. Collectively, our data demonstrate that mammalian Twinkle is important for mitochondrial integrity in DA neurons and provide a novel mouse model in which increased mtDNA deletions may lead to DA neuron degeneration and parkinsonism.
ISSN:0964-6906
1460-2083
DOI:10.1093/hmg/dds365