Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves
[Display omitted] ► Spatially constrained body DW-MRI signal decay model. ► Fusion bootstrap moves solver to reliably infer the incoherent motion model parameters. ► Increased precision of incoherent motion parameter estimates from in-vivo DW-MRI. ► Improved characterization of heterogeneous tumor e...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2013-04, Vol.17 (3), p.325-336 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
► Spatially constrained body DW-MRI signal decay model. ► Fusion bootstrap moves solver to reliably infer the incoherent motion model parameters. ► Increased precision of incoherent motion parameter estimates from in-vivo DW-MRI. ► Improved characterization of heterogeneous tumor environment.
Diffusion-weighted MRI has the potential to provide important new insights into physiological and microstructural properties of the body. The Intra-Voxel Incoherent Motion (IVIM) model relates the observed DW-MRI signal decay to parameters that reflect blood flow in the capillaries (D∗), capillaries volume fraction (f), and diffusivity (D). However, the commonly used, independent voxel-wise fitting of the IVIM model leads to imprecise parameter estimates, which has hampered their practical usage.
In this work, we improve the precision of estimates by introducing a spatially-constrained Incoherent Motion (IM) model of DW-MRI signal decay. We also introduce an efficient iterative “fusion bootstrap moves” (FBM) solver that enables precise parameter estimates with this new IM model. This solver updates parameter estimates by applying a binary graph-cut solver to fuse the current estimate of parameter values with a new proposal of the parameter values into a new estimate of parameter values that better fits the observed DW-MRI data. The proposals of parameter values are sampled from the independent voxel-wise distributions of the parameter values with a model-based bootstrap resampling of the residuals.
We assessed both the improvement in the precision of the incoherent motion parameter estimates and the characterization of heterogeneous tumor environments by analyzing simulated and in vivo abdominal DW-MRI data of 30 patients, and in vivo DW-MRI data of three patients with musculoskeletal lesions. We found our IM-FBM reduces the relative root mean square error of the D∗ parameter estimates by 80%, and of the f and D parameter estimates by 50% compared to the IVIM model with the simulated data. Similarly, we observed that our IM-FBM method significantly reduces the coefficient of variation of parameter estimates of the D∗ parameter by 43%, the f parameter by 37%, and the D parameter by 17% compared to the IVIM model (paired Student’s t-test, p |
---|---|
ISSN: | 1361-8415 1361-8423 |
DOI: | 10.1016/j.media.2012.12.001 |