The aged niche disrupts muscle stem cell quiescence
The niche is a conserved regulator of stem cell quiescence and function. During ageing, stem cell function declines. To what extent and by what means age-related changes within the niche contribute to this phenomenon are unknown. Here we demonstrate that the aged muscle stem cell niche, the muscle f...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2012-10, Vol.490 (7420), p.355-360 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The niche is a conserved regulator of stem cell quiescence and function. During ageing, stem cell function declines. To what extent and by what means age-related changes within the niche contribute to this phenomenon are unknown. Here we demonstrate that the aged muscle stem cell niche, the muscle fibre, expresses Fgf2 under homeostatic conditions, driving a subset of satellite cells to break quiescence and lose their self-renewing capacity. We show in mice that relatively dormant aged satellite cells robustly express sprouty 1 (
Spry1
), an inhibitor of fibroblast growth factor (FGF) signalling. Increasing FGF signalling in aged satellite cells under homeostatic conditions by removing
Spry1
results in the loss of quiescence, satellite cell depletion and diminished regenerative capacity. Conversely, reducing niche-derived FGF activity through inhibition of Fgfr1 signalling or overexpression of
Spry1
in satellite cells prevents their depletion. These experiments identify an age-dependent change in the stem cell niche that directly influences stem cell quiescence and function.
The expression of fibroblast growth factor in aged muscle fibre, the muscle stem cell niche, is shown to cause satellite cells to lose the capacity for self-renewal, and is thus an age-dependent change that directly influences stem cell quiescence and function.
Stem-cell niche less stable with age
The efficiency of stem-cell maintenance declines with age, but it is not clear whether the stem-cell niche itself plays a part in this decline. Here, Andrew Brack and colleagues report that as mice age, the skeletal-muscle niche becomes more mitogenic — meaning more cells undergo mitosis and differentiation — and less capable of maintaining the quiescence of the skeletal-muscle stem cells. This results in the loss of capacity for stem-cell self-renewal. The protein FGF2 is a key mitogenic factor in the aged niche, although a small number of muscle stem cells express SPRY1, an inhibitor of FGF signalling, and maintain some quiescence in aged skeletal-muscle fibres. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/nature11438 |