Kaposi sarcoma-associated herpesvirus g protein-coupled receptor enhances endothelial cell survival in part by upregulation of bcl-2

Kaposi sarcoma-associated herpesvirus (KSHV) encoded G protein-coupled receptor (vGPCR) is a constitutively active lytic phase protein with significant homology to the human interleukin-8 receptor. vGPCR is necessary and sufficient to induce angiogenesis as well as the spindle cell proliferation cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ochsner journal 2013, Vol.13 (1), p.66-75
Hauptverfasser: Abboud, Elizabeth R, Shelby, Bryan D, Angelova, Magdalena, Nelson, Anne B, Ferris, Marybeth, McFerrin, Harris E, Morris, Cindy A, Sullivan, Deborah E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kaposi sarcoma-associated herpesvirus (KSHV) encoded G protein-coupled receptor (vGPCR) is a constitutively active lytic phase protein with significant homology to the human interleukin-8 receptor. vGPCR is necessary and sufficient to induce angiogenesis as well as the spindle cell proliferation characteristic of Kaposi sarcoma (KS) lesions. We previously demonstrated that Bcl-2, an antiapoptotic protein, is upregulated in KS lesions. The aim of this study was to determine if vGPCR enhances endothelial cell survival through upregulation of Bcl-2 expression and to elucidate the signaling pathways involved. Primary human umbilical vein endothelial cells were transduced with a recombinant retrovirus expressing vGPCR and then subjected to serum starvation. Cell viability and apoptosis were analyzed by fluorescence-activated cell sorting. Bcl-2 expression was determined by real-time quantitative reverse transcription polymerase chain reaction and immunoblotting. Specific pharmacological inhibitors of phosphatidylinositol 3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) were employed to elucidate the signaling pathways involved. Bcl-2 expression was knocked down using small interfering RNA (siRNA). Endothelial cells expressing vGPCR showed increased survival after serum starvation and upregulation of Bcl-2 messenger RNA (mRNA) and protein. The vGPCR-induced increases in both Bcl-2 mRNA and protein levels were dependent on PI3K signaling but not on mTOR. Moreover, siRNA inhibition of Bcl-2 resulted in significant abrogation of the observed vGPCR-mediated cell survival advantage. Taken together, the results demonstrate that Bcl-2 is a mediator of vGPCR-induced endothelial cell survival and is a downstream effector of Akt in this process.
ISSN:1524-5012