Treatment with a copper-selective chelator causes substantive improvement in cardiac function of diabetic rats with left-ventricular impairment

Defective copper regulation is implicated as a causative mechanism of organ damage in diabetes. Treatment with trientine, a divalent-copper-selective chelator, improves arterial and renal structure/function in diabetes, wherein it also ameliorates left-ventricular (LV) hypertrophy. However, direct i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular Diabetology 2013-01, Vol.12 (1), p.28-28, Article 28
Hauptverfasser: Lu, Jun, Pontré, Beau, Pickup, Stephen, Choong, Soon Y, Li, Mingming, Xu, Hong, Gamble, Gregory D, Phillips, Anthony R J, Cowan, Brett R, Young, Alistair A, Cooper, Garth J S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Defective copper regulation is implicated as a causative mechanism of organ damage in diabetes. Treatment with trientine, a divalent-copper-selective chelator, improves arterial and renal structure/function in diabetes, wherein it also ameliorates left-ventricular (LV) hypertrophy. However, direct in vivo evidence that trientine can improve cardiac function in heart failure has hitherto been lacking. To determine whether trientine treatment could improve in vivo outcome, we measured cardiac function in groups of trientine-treated diabetic (TETA-DIA), non-drug-treated diabetic (DIA) and sham-treated control (SHAM) rats, by using in vivo high-field cardiac magnetic-resonance imaging (cMRI) and an ex vivo isolated-perfused working heart method. Forty age-matched animals underwent a cMRI scan after which 12 were randomized to the SHAM group and 28 underwent streptozotocin-injection; of these, 25 developed stable diabetes, and 12 were then randomized to receive no treatment for 16 weeks (DIA) and the other 13 to undergo 8-weeks' untreated diabetes followed by 8-weeks' drug treatment (TETA-DIA). Animals were studied again by cMRI at 8 and 16 weeks following disease induction, and finally by measurement of ex vivo cardiac function. After eight weeks diabetes, rats (DIA/TETA-DIA) had developed significant impairment of LV function, as judged by impairment of ejection fraction (LVEF), cardiac output (CO), and LV mass (LVM)/body-mass (all P 
ISSN:1475-2840
1475-2840
DOI:10.1186/1475-2840-12-28