Misshapen decreases integrin levels to promote epithelial motility and planar polarity in Drosophila

Complex organ shapes arise from the coordinate actions of individual cells. The Drosophila egg chamber is an organ-like structure that lengthens along its anterior-posterior axis as it grows. This morphogenesis depends on an unusual form of planar polarity in the organ's outer epithelial layer,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2013-03, Vol.200 (6), p.721-729
Hauptverfasser: Lewellyn, Lindsay, Cetera, Maureen, Horne-Badovinac, Sally
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Complex organ shapes arise from the coordinate actions of individual cells. The Drosophila egg chamber is an organ-like structure that lengthens along its anterior-posterior axis as it grows. This morphogenesis depends on an unusual form of planar polarity in the organ's outer epithelial layer, the follicle cells. Interestingly, this epithelium also undergoes a directed migration that causes the egg chamber to rotate around its anterior-posterior axis. However, the functional relationship between planar polarity and migration in this tissue is unknown. We have previously reported that mutations in the Misshapen kinase disrupt follicle cell planar polarity. Here we show that Misshapen's primary role in this system is to promote individual cell motility. Misshapen decreases integrin levels at the basal surface, which may facilitate detachment of each cell's trailing edge. These data provide mechanistic insight into Misshapen's conserved role in cell migration and suggest that follicle cell planar polarity may be an emergent property of individual cell migratory behaviors within the epithelium.
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.201209129