Lewis acid catalysis of phosphoryl transfer from a copper(II)-NTP complex in a kinase ribozyme

The chemical strategies used by ribozymes to enhance reaction rates are revealed in part from their metal ion and pH requirements. We find that kinase ribozyme K28(1-77)C, in contrast with previously characterized kinase ribozymes, requires Cu(2+) for optimal catalysis of thiophosphoryl transfer fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2013-03, Vol.41 (5), p.3327-3338
Hauptverfasser: Biondi, Elisa, Poudyal, Raghav R, Forgy, Joshua C, Sawyer, Andrew W, Maxwell, Adam W R, Burke, Donald H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chemical strategies used by ribozymes to enhance reaction rates are revealed in part from their metal ion and pH requirements. We find that kinase ribozyme K28(1-77)C, in contrast with previously characterized kinase ribozymes, requires Cu(2+) for optimal catalysis of thiophosphoryl transfer from GTPγS. Phosphoryl transfer from GTP is greatly reduced in the absence of Cu(2+), indicating a specific catalytic role independent of any potential interactions with the GTPγS thiophosphoryl group. In-line probing and ATPγS competition both argue against direct Cu(2+) binding by RNA; rather, these data establish that Cu(2+) enters the active site within a Cu(2+)•GTPγS or Cu(2+)•GTP chelation complex, and that Cu(2+)•nucleobase interactions further enforce Cu(2+) selectivity and position the metal ion for Lewis acid catalysis. Replacing Mg(2+) with [Co(NH3)6](3+) significantly reduced product yield, but not kobs, indicating that the role of inner-sphere Mg(2+) coordination is structural rather than catalytic. Replacing Mg(2+) with alkaline earths of increasing ionic radii (Ca(2+), Sr(2+) and Ba(2+)) gave lower yields and approximately linear rates of product accumulation. Finally, we observe that reaction rates increased with pH in log-linear fashion with an apparent pKa = 8.0 ± 0.1, indicating deprotonation in the rate-limiting step.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkt039