Selective virus detection in complex sample matrices with photonic crystal optical cavities
Rapid, sensitive, and selective detection of viruses is critical for applications in medical diagnostics, biosecurity, and environmental safety. In this article, we report the application of a point-defect-coupled W1 photonic crystal (PhC) waveguide biosensor to label-free optical detection of virus...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2013-06, Vol.44, p.229-234 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rapid, sensitive, and selective detection of viruses is critical for applications in medical diagnostics, biosecurity, and environmental safety. In this article, we report the application of a point-defect-coupled W1 photonic crystal (PhC) waveguide biosensor to label-free optical detection of viruses. Fabricated on a silicon-on-insulator (SOI) substrate using electron-beam (e-beam) lithography and reactive-ion-etching, the PhC sensing platform allows optical detection based on resonant mode shifts in response to ambient refractive index changes produced by infiltration of target biomaterial within the holes of the PhC structure. Finite difference time domain (FDTD) calculations were performed to assist with design of the sensor, and to serve as a theoretical benchmark against which experimental results could be compared. Using Human Papillomavirus virus-like particles (VLPs) spiked in 10% fetal bovine serum as a model system, we observed a limit of detection of 1.5nM in simple (buffer only) or complex (10% serum) sample matrices. The use of anti-VLP antibodies specific for intact VLPs with the PhC sensors provided highly selective VLP detection.
► 2-D Photonic Crystals are optical sensors with an exceptionally small sensing volume. ► We conducted FDTD calculations that suggest single virus detection is possible. ► Detection of human papillomavirus virus-like particles (VLPs) was demonstrated. ► High selectivity was obtained in buffer and in serum. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2013.01.004 |