Reaction path ensemble of the B-Z-DNA transition: a comprehensive atomistic study
Since its discovery in 1979, left-handed Z-DNA has evolved from an in vitro curiosity to a challenging DNA structure with crucial roles in gene expression, regulation and recombination. A fundamental question that has puzzled researchers for decades is how the transition from B-DNA, the prevalent ri...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2013-01, Vol.41 (1), p.33-43 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since its discovery in 1979, left-handed Z-DNA has evolved from an in vitro curiosity to a challenging DNA structure with crucial roles in gene expression, regulation and recombination. A fundamental question that has puzzled researchers for decades is how the transition from B-DNA, the prevalent right-handed form of DNA, to Z-DNA is accomplished. Due to the complexity of the B-Z-DNA transition, experimental and computational studies have resulted in several different, apparently contradictory models. Here, we use molecular dynamics simulations coupled with state-of-the-art enhanced sampling techniques operating through non-conventional reaction coordinates, to investigate the B-Z-DNA transition at the atomic level. Our results show a complex free energy landscape, where several phenomena such as over-stretching, unpeeling, base pair extrusion and base pair flipping are observed resulting in interconversions between different DNA conformations such as B-DNA, Z-DNA and S-DNA. In particular, different minimum free energy paths allow for the coexistence of different mechanisms (such as zipper and stretch-collapse mechanisms) that previously had been proposed as independent, disconnected models. We find that the B-Z-DNA transition--in absence of other molecular partners--can encompass more than one mechanism of comparable free energy, and is therefore better described in terms of a reaction path ensemble. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gks1003 |