Towards Web 3.0: taxonomies and ontologies for medical education -- a systematic review

Both for curricular development and mapping, as well as for orientation within the mounting supply of learning resources in medical education, the Semantic Web ("Web 3.0") poses a low-threshold, effective tool that enables identification of content related items across system boundaries. R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GMS Zeitschrift für Medizinische Ausbildung 2013, Vol.30 (1), p.Doc13-Doc13
Hauptverfasser: Blaum, Wolf E, Jarczweski, Anne, Balzer, Felix, Stötzner, Philip, Ahlers, Olaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Both for curricular development and mapping, as well as for orientation within the mounting supply of learning resources in medical education, the Semantic Web ("Web 3.0") poses a low-threshold, effective tool that enables identification of content related items across system boundaries. Replacement of the currently required manual with an automatically generated link, which is based on content and semantics, requires the use of a suitably structured vocabulary for a machine-readable description of object content. Aim of this study is to compile the existing taxonomies and ontologies used for the annotation of medical content and learning resources, to compare those using selected criteria, and to verify their suitability in the context described above. Based on a systematic literature search, existing taxonomies and ontologies for the description of medical learning resources were identified. Through web searches and/or direct contact with the respective editors, each of the structured vocabularies thus identified were examined in regards to topic, structure, language, scope, maintenance, and technology of the taxonomy/ontology. In addition, suitability for use in the Semantic Web was verified. Among 20 identified publications, 14 structured vocabularies were identified, which differed rather strongly in regards to language, scope, currency, and maintenance. None of the identified vocabularies fulfilled the necessary criteria for content description of medical curricula and learning resources in the German-speaking world. While moving towards Web 3.0, a significant problem lies in the selection and use of an appropriate German vocabulary for the machine-readable description of object content. Possible solutions include development, translation and/or combination of existing vocabularies, possibly including partial translations of English vocabularies.
ISSN:1860-7446
1860-3572
DOI:10.3205/zma000856