Electrophysiological and pharmacological properties of GABAergic cells in the dorsal raphe nucleus
The dorsal raphe nucleus (DRN) is the origin of the central serotonin [5-hydroxytryptamine (5-HT)] system and plays an important role in the regulation of many physiological functions such as sleep/arousal, food intake and mood. In order to understand the regulatory mechanisms of 5-HT system, charac...
Gespeichert in:
Veröffentlicht in: | The journal of physiological sciences 2013-03, Vol.63 (2), p.147-154 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dorsal raphe nucleus (DRN) is the origin of the central serotonin [5-hydroxytryptamine (5-HT)] system and plays an important role in the regulation of many physiological functions such as sleep/arousal, food intake and mood. In order to understand the regulatory mechanisms of 5-HT system, characterization of the types of neurons is necessary. We performed electrophysiological recordings in acute slices of glutamate decarboxylase 67–green fluorescent protein knock-in mice. We utilized this mouse to identify visually GABAergic cells. Especially, we examined postsynaptic responses mediated by 5-HT receptors between GABAergic and serotonergic cells in the DRN. Various current responses were elicited by 5-HT and 5-HT1A or 5-HT2A/2C receptor agonists in GABAergic cells. These results suggested that multiple 5-HT receptor subtypes overlap on GABAergic cells, and their combination might control 5-HT cells. Understanding the postsynaptic 5-HT feedback mechanisms may help to elucidate the 5-HT neurotransmitter system and develop novel therapeutic approaches. |
---|---|
ISSN: | 1880-6546 1880-6562 |
DOI: | 10.1007/s12576-012-0250-7 |