Z-band Alternatively Spliced PDZ Motif Protein (ZASP) Is the Major O-Linked β-N-Acetylglucosamine-substituted Protein in Human Heart Myofibrils
We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent t...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2013-02, Vol.288 (7), p.4891-4898 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ∼90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p < 0.05). ZASP is only 22% of all O-GlcNAcylated proteins in mouse heart myofibrils.
Background: We studied O-GlcNAc-modified protein in sarcomeric proteins of human heart.
Results: ZASP (Z-band alternatively spliced PDZ motif protein) accounts for 50–80% of O-GlcNAcylated protein.
Conclusion: ZASP is the major O-GlcNAc-substituted protein in human heart muscle, and its levels increase in pathological muscle.
Significance: Modulation of O-GlcNAcylation in ZASP may have a role in mechanotransduction in the heart. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M112.410316 |