Fabricating a Reversible and Regenerable Raman-Active Substrate with a Biomolecule-Controlled DNA Nanomachine

A DNA configuration switch is designed to fabricate a reversible and regenerable Raman-active substrate. The substrate is composed of a Au film and a hairpin-shaped DNA strand (hot-spot-generation probes, HSGPs) labeled with dye-functionalized silver nanoparticles (AgNPs). Another ssDNA that recogni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-12, Vol.134 (49), p.19957-19960
Hauptverfasser: Zheng, Jing, Jiao, Anli, Yang, Ronghua, Li, Huimin, Li, Jishan, Shi, Muling, Ma, Cheng, Jiang, Ying, Deng, Li, Tan, Weihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A DNA configuration switch is designed to fabricate a reversible and regenerable Raman-active substrate. The substrate is composed of a Au film and a hairpin-shaped DNA strand (hot-spot-generation probes, HSGPs) labeled with dye-functionalized silver nanoparticles (AgNPs). Another ssDNA that recognizes a specific trigger is used as an antenna. The HSGPs are immobilized on the Au film to draw the dye-functionalized AgNPs close to the Au surface and create an intense electromagnetic field. Hybridization of HSGP with the two arm segments of the antenna forms a triplex-stem structure to separate the dye-functionalized AgNPs from the Au surface, quenching the Raman signal. Interaction with its trigger releases the antenna from the triplex-stem structure, and the hairpin structure of the HSGP is restored, creating an effective “off–on” Raman signal switch. Nucleic acid sequences associated with the HIV-1 U5 long terminal repeat sequences and ATP are used as the triggers. The substrate shows excellent reversibility, reproducibility, and controllability of surface-enhanced Raman scattering (SERS) effects, which are significant requirements for practical SERS sensor applications.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/ja308875r