Structural insights into protein-only RNase P complexed with tRNA

RNase P is the essential activity removing 5′-leader sequences from transfer RNA precursors. RNase P was always associated with ribonucleoprotein complexes before the discovery of protein-only RNase P enzymes called PRORPs (PROteinaceous RNase P) in eukaryotes. Here we provide biophysical and functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2013-01, Vol.4 (1), p.1353-1353, Article 1353
Hauptverfasser: Gobert, Anthony, Pinker, Franziska, Fuchsbauer, Olivier, Gutmann, Bernard, Boutin, René, Roblin, Pierre, Sauter, Claude, Giegé, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNase P is the essential activity removing 5′-leader sequences from transfer RNA precursors. RNase P was always associated with ribonucleoprotein complexes before the discovery of protein-only RNase P enzymes called PRORPs (PROteinaceous RNase P) in eukaryotes. Here we provide biophysical and functional data to understand the mode of action of PRORP enzymes. Activity assays and footprinting experiments show that the anticodon domain of transfer RNA is dispensable, whereas individual residues in D and TψC loops are essential for PRORP function. PRORP proteins are characterized in solution and a molecular envelope is derived from small-angle X-ray scattering. Conserved residues are shown to be involved in the binding of one zinc atom to PRORP. These results facilitate the elaboration of a model of the PRORP/transfer RNA interaction. The comparison with the ribonucleoprotein RNase P/transfer RNA complex suggests that transfer RNA recognition by PRORP proteins is similar to that by ribonucleoprotein RNase P. RNase P is a key enzyme implicated in transfer RNA maturation that removes the 5′-leader sequences from transfer RNA precursors. In this study, a biophysical characterization of a novel protein-only variant of RNase P, known as PRORP (PROteinaceous RNase P), reveals that transfer RNA recognition by PRORP is similar to that by ribonucleoprotein RNase P.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms2358